Understanding and Building Java Beans Components Ted Faison

Understanding and Building Java Beans Components

Author: Ted Faison, Faison Computing Inc.

Type: Preconference Tutorial
Track: JBuilder

Short Description

An introduction to the Java Beans specification and Java Bean development. Examples are shown using
Borland JBuilder as an example of an Application Builder tool to develop beans.

Abstract

Rapid application development (RAD) isthe goal of all developers. Theinitial JDK 1.0.2 did not support RAD
programming environments, lacking sophistication in the areas like application builder support and
component-software packaging. Java Beans changes al that, poising Java to become the standard devel opment
language for the next decade. The Beans spec allows tool builders to create and reuse Java componentsin a
RAD application-builder framework. Beans leverage many of the design patterns that have recently gained
much attention, such as the Event model, property introspection, persistence and others. This paper gives an
overview of Java Beans and shows how they can be used to accelerate software devel opment.

Overview

Java Beans represent that latest attempt at building a better component model. Why do we need yet another
model ? We aready have ActiveX for Microsoft Windows platforms, OpenDoc for the Macintosh,
SOM/DSOM for OS/2 and others for just about every major platform. These existing models suffer from two
main problems: they are platform-dependent and they are too complicated to use from the programmer’s
perspective. The fact that OLE is still considered an arcane system, even after several years from itsrelease, is
testament to the difficulties programmers encounter when approaching OLE in general and ActiveX in
particular.

The Java Beans spec was written to address platform neutrality and programmer learning-curve-burnout from
the start. The neutrality is achieved by using Java as the building language. To keep Java Beans simple, the
designers made conscious design tradeoffs at every level, to provide as much flexibility and power as possible
without creating a monster. One important decision that enormously simplifies a programmer’s job was to
incorporate support for object persistence directly at the language level. Javais the only major language to
offer this feature. When you develop a Java Bean, it is persistent almost by default.

Java Beans are designed to be easy to use and easy to customize. Delphi and Visual Basic programmers are
already familiar with Property Inspectors, which allow you to change the properties of an object. Beans offer
the same type of support. Additional changes can be made to a Bean by adding customized event handlers. If
changing properties or adding methods is still insufficient to achieve the desired goal, an entirely new class
can be derived from an existing Bean and customized to your heart’s content.

But no component is completely useful by itself. It is the interconnection of components that allows you to

build real systems. The Java Beans spec was written to facilitate the interconnection of Beans, using a new
technique known as the Event/Listener model. Beans can be interconnected with little effort using hand-

8th Annual Borland Developers Conference - 1997 Page 1

Understanding and Building Java Beans Components Ted Faison

written code, but the preferred approach is to use athird party Application Builder, such as Borland JBuilder.
Using atool not only makes the interconnection process simple and fast, but also robust. This doesn’t preclude
bugs, but certainly reduces the occurrence of silly errors. Java Beans can also be connected to CORBA
compliant ORBSs, using so-called bridges, which are special components that translate Bean-jargon to
CORBA-speak. Or, if you'reredly into CORBA, you can develop CORBA-compliant Beans using the Java
IDL compiler. The Java motto tellsit all: Write Once, Run Everywhere!

What Java Beans are not

From the above discussion it might be tempting to deduce that Beans are the successors to ActiveX, OpenDoc
and all other current component models. Not so. Beans are designed to be used with and in addition to existing
component models. To prove this point, the JavaSoft folks and a number of third party vendors offer
technologies to allow Java Beans to connect with ActiveX, OpenDoc or other component types. There are also
specia wrappers you can use to package a Bean as an ActiveX, OpenDoc or other component.

Beans are also not designed for real-time applications. Being Java components, they run in the interpreted
environment of the Java Virtual Machine, and are necessarily slower than their ActiveX or OpenDoc
counterparts. It would generally be a bad choice to use Beans to implement the kernel of areal-time operating
system, or to create device drivers.

Moreover, Beans are designed to be small, but not extremely small. It wouldn't be very efficient to create
Beans for scalars, with incarnations like Bool eanBean or Char Bean. Beans are designed to encapsul ate the
level of functionality typically associated with class objects, which have several properties and possibly several
event handlers that can be modified.

Anatomy of a Java Bean

Java Beans are essentially black-box entities that have built-in Application Builder support. A Bean is
normally customized when used in an application. The way it can be customized involves 3 fundamental
categories: Properties, Methods and Events (PME). Beans are often described as having a PME moddl. If a
Bean can’t be customized using PME changes, then only option isto use it as the ancestor for an entirely new
class.

Properties

Properties have become popular with the advent of Visual Basic and Delphi, and even OLE automation.
Properties are attributes you can change with scripting languages like Visual Basic or JavaScript, using
assignment-statement semantics, such as:

nybj ect . Col or = red;
or

col or = myQbj ect. Col or;

Underneath the pretty syntax, accessing a property involves the invocation of getter or setter functions,
collectively called accessors. Java properties aren’t declared explicitly. They are defined by the signatures of
their accessors. Given a property of type SomePr oper t y, the getter function will have the signature

SoneProperty get MyProperty();

8th Annual Borland Developers Conference - 1997 Page 2

Understanding and Building Java Beans Components Ted Faison

and the setter function will have the signature

voi d set MyProperty(SoneProperty theProperty);

The class myBean might have accessors that look like this for a property named Col or :

public class MyBean {
private Col or col or;

public Col or get ForegroundCol or() {return color;}
public void setForegroundCol or (Col or theColor) {color = theColor;}

}

Because accessing properties involves method calls, side effects are possible. Thisis good, because assigning
new values to a property can trigger other code that might be required to execute when the property is
changed. For example the following code increments a counter every time the Col or property of MyBean is
changed:

8th Annual Borland Developers Conference - 1997 Page 3

Understanding and Building Java Beans Components Ted Faison

public class MyBean {

private Col or color;
private int col or Changes;

public void setCol or(Col or theColor) {
col or = theCol or;
col or Changes++;

}
}

Side effects can be much more extensive. For example, a grid control might have a property called
Col uimCount . Assigning a new value to it would cause the grid to internally change the column count,
reorganize its cell datain some way, then repaint the entire control with the new number of columns.

Properties are a natural and easy way to change the state of a Bean. Properties |et you change attributes with
simple assignments, and relieve you from having to know the number and order of parametersin a method
call, worrying about values returned by a method call, or dealing with exceptions. Properties also lend
themselves eminently to manipulation in an Application Builder. Property Sheets can be used, as in JBuilder,
to allow developers to change basic attributes of a Bean without the need for recompilation or linkage of the
component. Not only are properties simple to use, but setting them can cause changes to a Bean that are visible
immediately at design time.

Indexed Properties

Some properties are not simple types, but occur as arrays. For example, a grid might have an array of Col unm
objects, each of which stores attributes like the column Ti t | e, the Ti t | eFont , the Ti t | eCol or, etc. To
access a Col unm requires supplying the index of the desired column. Properties that are accessed through an
array index are called Indexed Properties. The index must always be an integer. Assume the Col unm and

G i d classes were defined like this:

public class Colum {
private String title;

public String getTitle() {return title;}
public void setTitle(String theTitle) {title = theTitle;}

}

public class Gid {
private Colum colums[];
/] accessors to individual Colums
public Columm getter(int thelndex) {return columms [thelndex];}

public void setter(int thelndex, Columm theColum) ({
col ums[thel ndex] = theCol um;
}

}
You could read and writethe Ti t | e for column 3 with a Java-aware scripting language like this:

grid.Colum[3] = “New Title";
String title = grid.Colum[3].Title();

Indexes are checked at runtime, and aj ava. | ang. Arr ayQut Of BoundsExcept i on will bethrown is
necessary.

8th Annual Borland Developers Conference - 1997 Page 4

Understanding and Building Java Beans Components Ted Faison

Bound Properties

Because objects are generally interconnected, it is sometimes necessary for property changes in one object to be
signaled to other objects. Say one object A encapsulatesthe User Pr ef er ences of your application. Another
object B might handle the painting of a window. If the user changes the selected background color for your
application through object A, then object B needs to notified so it can update its background as well.

A Bound Property in Javais a property that signals interested objects when it is changed. The object that the
property belongsto is called the property-change event source. The signal sent to interested objectsis called an
event. The objects receiving the notifications are called property-change event listeners. In order for an object
to receiver property-change notifications, it must implement the Pr oper t yChangelLi st ener interface, like
this:

cl ass MyLi stener inplements java.beans. PropertyChangelLi stener {

/1 this nethod is called when a property is changed
voi d propertyChange(PropertyChangeEvent evt);

/1
}

The listener must then register itself with the event source by calling the method

public void addPropertyChangeli st ener (PropertyChangeli stener thelListener);

To stop receiving property-change notifications, objects can call the following method of the event source:

public void renpvePropertyChangelLi st ener (PropertyChangeli st ener thelListener);

For more information about events, sources and listeners, see the section below entitled The Event Listener
Model.

Keep in mind that you don’t declare individual properties as bound, per se, using some new Java keyword. A
bound property looks like any other property. When a property is changed, the setter method sends the
property-change event if the property is bounded, otherwise it doesn’t. To see which properties of aclass are
bound, you have to actually ook at the source code for each property setter function.

Another important thing is that the property-change notification object carries information telling you which
property was changed, its previous value and its new value. The event is fired by the property setter method, by
calling the pr oper t yChange method for each registered listener. Because there can be more than one listener
for a property change, you need a container to keep track of all the listeners. When the time comes to fire the
event, you iterate over the container and send the event to each listener in it.

Or you can do it the easy way. Because managing collections of listenersis such a common task, the JavaSoft
folks implemented an ad hoc class called Pr oper t yChangeSuppor t to handle all the details of managing
collections of listeners. An object with bound properties instantiates a Pr oper t yChangeSuppor t object, and
delegates all property-change notifications to it, like this:

public class MyBean {

private Col or color;
private java. beans. PropertyChangeSupport propertyChangelisteners =
new j ava. beans. Propert yChangeSupport (this);

public Color getColor() {return color;}

public void setCol or(Col or theColor) {
propertyChangelLi st eners. firePropertyChange("Col or", color, theColor);

8th Annual Borland Developers Conference - 1997 Page 5

Understanding and Building Java Beans Components Ted Faison

col or = theCol or;

}

public void
addPr oper t yChangelLi st ener (j ava. beans. Propert yChangelLi st ener thelLi stener) {
propert yChangelLi st eners. addPr opert yChangeli st ener (t heLi st ener);

public void
removePr opert yChangeli st ener (j ava. beans. Propert yChangelLi st ener theListener) {
propert yChangeli st eners. r enovePr opert yChangeli st ener (t heLi st ener);

}
The events sent to each listener are objects of class Pr oper t yChangeEvent , which looks something like this:

public class PropertyChangeEvent extends java.util.Event Qbject {

private String propertyNane;
private bject newval ue;
private bject ol dval ue;
private Object propagationld;

publ i c PropertyChangeEvent (Obj ect source,
String propertyNane,
oj ect ol dval ue,
Ooj ect newval ue) {.}

public String getPropertyNanme() ({
return propertyNang;

public Object get Newal ue() {
return newval ue;
}

public Object getd dvalue() {
return ol dval ue;

}

public Object getPropagationld() {
return propagationld;

}

ThepropertyNane isaStri ng that indicates the printable name of the property. The name doesn’t have to
match the property’ s name exactly. Y ou could use an abbreviation or even a different word, as long as the
listeners understand it.

The pr opagat i onl d is currently marked for future use by JDK1.1. Its purpose is to prevent circularitiesin
property change notifications. A circularity occurs when two objects are direct or indirect property-change
listeners of each other. Changing a property in A causes a notification to be sent to B, which in response
changes one of its own properties. This causes B to send a notification to A. The ensuing infinite notification
loop would immediately deadlock the system. The pr opagat i onl d field allows you to tag a notification with
anumber that the listener can look at. If the listener sends a property notification as a consequence of
receiving a property-change notification, it must use the first notification’s pr opagat i onl d in the new
notification. This way the original property-change source can determine that the notification isin response to
its first notification and avoid an infinite loop. Keep in mind that this whole scenario of use of the

propagat i onl d field is yet to be implemented.

8th Annual Borland Developers Conference - 1997 Page 6

Understanding and Building Java Beans Components Ted Faison

The following example shows a class that listens for changes in the property named Col or . The listener
doesn’t check the ID of the event source, because it only installed itself as alistener on one source.

cl ass MyLi stener inplements java.beans. PropertyChangelLi stener {
java. awt . Col or backgroundCol or = nul |

public void
propert yChange(j ava. beans. Propert yChangeEvent theEvent) {

/1 see if the background col or changed
if (theEvent.getPropertyNane() == "Color") {

/'l get the new col or

Col or ol dCol or = (Col or) theEvent. getd dVal ue();
Col or newCol or (Col or) theEvent. get Newal ue();
if (oldColor == newCol or) return

backgr oundCol or = newCol or;

/'l the background changed, so repaint ourselves
/1

Bound and Constrained Properties

When a property is bound, any changesto it will trigger a notification event to registered listeners. There are
occasions when changes to a property need be validated by other objects before being accepted. Such bound
properties are said to be constrained, because one of the property-change listeners can veto the change. Say
you have atab control object, showing the page numbers available in a document. By clicking the page
number you set apageNunber property to anew page. Assume the document object with the actual pagesisa
multi-user object. Users can add and delete pages at any time. Before you switch the tab control to a new page,
you must have the document validate that the page exists. If the page was deleted, the listener throws a

Pr opert yVet oExcept i on, and the tab control avoids going to a non-existent page, and possibly even
removes the tab for that page.

Here' s how it all works. First you must have an object that contains the constrained property. When | say
constrained, it isimplied that the property is also bound. There is no such thing as a constrained unbound
property. The property will have the usual getter and setter methods, whose names follow the Java property
design patterns described for bound properties. Calling the setter function causes a Pr oper t yChangeEvent
to be broadcast to all registered listeners. The order of delivery is not specified by the Beans spec, so be careful
your listeners are not relying on a certain order to work correctly. Because the setter method can cause a

Pr opert yVet oExcept i on, you can identify constrained properties by the signature of their setter method.
For a property name PageNunber , the setter would look like this:

public int getPageNunber();
public void set PageNunber (i nt thePageNunber) throws PropertyVet oExcepti on;

When alistener receives aPr oper t yChangeEvent , keep in mind that the reason the event was sent was not
to tell the listener that the property changed, but only to find out if all the listeners allow the property to be
changed. If listener A received the notification and changed it internal state to reflect the event, it is possible
for a subsequent object in the listener chain to veto the change. Listener A would now have an incorrect state.

8th Annual Borland Developers Conference - 1997 Page 7

Understanding and Building Java Beans Components Ted Faison

Listeners for constrained properties must implement the Vet oabl eChangeli st ener likethis:

cl ass MyVet oabl eLi stener inplenents java. beans. Vet oabl eChangelLi st ener {

/1 this nethod is called to validate a property change
public void vetoabl eChange(j ava. beans. Propert yChangeEvent theEvent)
t hrows java. beans. PropertyVet oException {}

/1
}

When the constrained property is changed, it is up to the setter function to fire the Pr oper t yChangeEvent
to the listeners, by calling their vet oabl eChange method. As with bound properties, the best way to handle
listenersisto use a Pr oper t yChangeSupport object, like this:

public class MyBean {

private Col or color;
private java. beans. Vet oabl eChangeSupport vetoabl eChangeli steners =
new j ava. beans. Vet oabl eChangeSupport (this);

public Color getColor() {return color;}
public void set Col or (Col or theCol or)
t hrows java. beans. PropertyVet oException {
vet oabl eChangeli st eners. fireVet oabl eChange("Col or", color, theColor);

/1 if we get here, it neans no |listener vetoed the change

/'l change the property
col or = theCol or;

}

public void

addVet oabl eChangelLi st ener (j ava. beans. Vet oabl eChangelLi st ener thelLi stener) {
vet oabl eChangeli st ener s. addVet oabl eChangelLi st ener (t helLi st ener);

}

public void

r enmoveVet oabl eChangeli st ener (j ava. beans. Vet oabl eChangelLi st ener thelLi stener) {
vet oabl eChangeli st ener s. r enoveVet oabl eChangeli st ener (t heLi st ener);

}

}

Methods

Methods contain a Bean's code, and are equivalent to C++ member functions. The previous section showed
publ i ¢ methods for accessing property values, but methods can have other access control modifiers. The Java
language defines the following modifiers: publ i ¢, pr ot ect ed, pri vat e and package. Thefirst three are
equivalent to their C++ cousins. The last issimilar to a C++ f ri end. Declaring a method of type package
makes it accessible to all the other classes defined in the same package. A method declared without an access
control modifier is by default apackage method.

Java methods are allowed to be overloaded, asin C++, but don’t support optional arguments. Java Bean
methods are no different from ordinary Java methods, except that they relate to Java Bean objects. Except for
methods related to accessing properties, Bean methods are generally not accessible at design timein
Application Builders like JBuilder.

8th Annual Borland Developers Conference - 1997 Page 8

Understanding and Building Java Beans Components Ted Faison

Events

When something happens to a Bean, it is called an event. Events can occur when a Bean gains or loses the
focus, when the mouse is clicked on it, when akey is typed, etc. Which events are significant to a Bean depend
entirely on what the Bean is designed to do. Some Beans will support GUI-type events, like mouse and
keyboard actions. Other Beans may not be visible at all, and respond to non-GUI-related events. For example,
a Database Bean might respond to a Post Recor dUpdat e event when the user changes a record.

The Event-Listener Model

In general, events propagate state-change notifications from one place to another. Some events are generated
by the system, others originate from Java objects or Beans. System events describe actions that originate
outside your program, such as mouse and keyboard activities. Events can also be generated by Java Beansin
your own program. The originator is called the source object, and the receiver is called the listener object. It
takes both objects for an event to be transmitted. In order for alistener to receive events from a source, it must
register itself as alistener with that source. Listeners must be derived from an Event Li st ener interface.
Java comes with a number of built-in listeners for common things like mouse and keyboard events. The
following figure shows the class hierarchy of these built-in interfaces:

8th Annual Borland Developers Conference - 1997 Page 9

Understanding and Building Java Beans Components Ted Faison

java.util.EventListener

java. awt . Acti onLi st ener

j ava. awt . Adj ust nent Li st ener

j ava. awt . Conponent Li st ener

j ava. awt . Cont ai ner Li st ener

j ava. awt . FocusLi st ener

java.awt . | tenLi st ener

j ava. awt . KeyLi st ener

| java.awt. Mbuseli st ener

j ava. awt . MouseMbt i onLi st ener
j ava. awt . Text Li st ener

j ava. awt . W ndowLi st ener

j ava. beans. Pr oper t yChangelLi st ener

j ava. beans. Vet oabl eChangeli st ener

Figure 1 - The built-in Java event handler interfaces.

Objects that are sources of events are not required to be derived from any special class or interface. When an
event occurs, the source invokes a method on the listener. The event itself is encoded in an object, which must
inherit fromj ava. uti | . Event Obj ect . This arrangement entails that the source know something about the
listener, because it invokes one of the listener’s methods. A separate event class must be created for each type
of event you will deal with. As of thiswriting, Java comes a variety of built-in event classes, as shown in the
following class hierarchy.

java. util.Event Obj ect

—— j ava. beans. Pr opert yChangeEvent
L java. awt. AWEvent

I java.awt. event. Acti onEvent
| java.awt . event. Adj ust nent Event
| java.awt.event. Conponent Event

L java.awt. event. Cont ai ner Event
j ava. awt . event . FocusEvent
java. awt . event. | nput Event

i: j ava. awt . event . KeyEvent
j ava. awt . event . MouseEvent

—— java.awt . event. Pai nt Event
L— java.awt. event. W ndowEvent

— java.awt.event.|tenEvent
L— java.awt . event. Text Event

8th Annual Borland Developers Conference - 1997 Page 10

Understanding and Building Java Beans Components Ted Faison

Figure 2 - The built-in Java event classes.

The BDK also contains some sample code showing the use of user-created eventsin the
beans\ deno\ sun\ deno\ quot e directory.

Hooking up the source and listener

OK. You have 3 objects so far: an event source, an event listener and an event object. Now what? To connect
the source and listener together, you need to register the listener with the source. Y ou do so using by calling an
addEvent method. The method name should follow the design pattern for events, i.e. should be the word
‘add’ followed by the event name. For an event class called MyEvent , the registering method should be named
addMyEvent . To unregister alistener, ther enoveEvent method should be called. Following the standard
design pattern, to unregister a MyEvent listener, you call the method r emoveMyEvent . As mentioned earlier,
to send an event, the source must know something about the listener. If an object is capable of sending
MyEvent objects, it not only knows about the MyEvent class, but also about the MyEvent listener class,
because the source invokes a specific method on the listener.

Say you created an LED Bean that needs to show the state of a button. When you press the button, the LED is
supposed to turn on. When you release the button, the LED turns off. Y ou can get this functionality using two
events sent from the button to the LED. The first step isto create event classes that carry information about
what happened. So you create the class But t onPr essedEvent . By convention, event class names end with
“Event”. You wind up with a hierarchy like this:

java. util.Event Obj ect

L But t onPr essedEvent
Figure 3 - A simple event class.

Y ou might implement the class something like this:

public class ButtonPressedEvent extends Event Object {
publ i c ButtonPressedEvent (java. awt. Conponent theSender) {
super (t heSender) ;

}

This simple class doesn’t really do anything, expect create a new type that you can use to identify

But t onPr essed eventsto the listener. To make the LED turn off, you have two options: you can create a new
But t onRel easedEvent , or you can change your original event class to carry information about the state of
the button. Let’ s take the latter approach. The class will need a member to hold the button state. Because an
event transmits information about something that has already occurred, it isimportant to protect its fields from
alteration. Making them pri vat e or prot ect ed usualy suffices. I’ll call the new class

But t onCl i ckedEvent , and implement like this:

public class ButtonCickedEvent extends Event Object {

prot ect ed bool ean pressed,;
public bool ean isPressed() {return pressed;}

public Buttond ickedEvent (java. awt. Conponent theSender,

bool ean statel sPressed) {
super (t heSender) ;

8th Annual Borland Developers Conference - 1997 Page 11

Understanding and Building Java Beans Components Ted Faison

pressed = statel sPressed;

}
}

Using this new class, if we receiveaBut t onCl i ckedEvent object, we can cal itsi sPr essed method to see
if the button was pressed or released. Now that we have an event to send, we need an LED Bean that knows
how to handle it. The class must understand But t onCl i ckedEvent s, so first I'll create a

But t onCl i ckedLi st ener interface like this:

interface ButtonC ickedLi stener extends java.util.EventListener {
voi d buttond icked(ButtonCd ickedEvent theEvent);
}

Any listener of But t onCl i ckedEvent s will be required to implement the But t onCl i ckedLi st ener
interface. For this quick example, the listener isthe LED bean. I’'ll implement the LED like this:

cl ass LED extends java.awt. Conponent inplenents ButtonC ickedListener {

public void buttonCicked(ButtonC ickedEvent theEvent) {
if (theEvent.isPressed())
/1 paint the LED on
el se
/1 paint the LED off
}

}

We're still missing a button that knows how to fire But t onCl i ckEvent s to registered LED object. I'll create
it asaclass called MyBut t on and implement it like this:

cl ass MyButton extends java.awt . Conponent {

publ i c bool ean nobuseDown(j ava. awt . Event evt, int x, int y) {
sendBut t onCl i ckEvent (new ButtonC i ckedEvent (this, true));
return true;

}
publ i c bool ean nouseUp(j ava. awt.Event evt, int x, int y)
sendBut t onCl i ckEvent (new ButtonC i ckedEvent (this, false));
return true;
}
public void sendButtonC ickEvent (ButtonCd ickedEvent theEvent) ({
/'l notify all listeners
Vector initiallisteners;
synchroni zed(this) {
initialListeners = (Vector) buttonListeners.clone();
}
for (int i =0; i <initiallListeners.size(); i++) {
But t onCl i ckedLi st ener nextGuy =
(ButtonCickedListener)(initialListeners.elementAt(i));
next Guy. buttond i cked(t heEvent);
}
}

protected Vector buttonListeners = new Vector();

public synchroni zed void
addBut t ond i ckedLi st ener (Butt onC i ckedLi st ener theListener) {
but t onLi st eners. addEl enent (t helLi st ener);

}

public synchroni zed void
renmoveBut t onCl i ckedLi st ener (ButtonCl i ckedLi st ener thelistener) {
butt onLi st eners. renmoveEl enent (t heli st ener);

8th Annual Borland Developers Conference - 1997 Page 12

Understanding and Building Java Beans Components Ted Faison

}
}

The two add and r enove methods near the end of the class manage the registering and unregistering of
listeners. An internal field of type Vect or is used to manage the collection of listeners. Class MyBut t on is
implemented as a multi-cast object, because it supports multiple listeners. The class would be simpler if it only
allowed one listener, because asimplefield of type But t onCl i ckLi st ener would suffice. If

But t onCl i ckedEvent were a uni-cast event, attempts to register more than one listener would cause you to
throw a TooManyLi st ener esExcept i on inaddButt onC i ckedLi st ener if attempts are made to
register more than one listener.

Getting back to my example, the interesting stuff isin the method sendBut t onCl i ckEvent , which takes a
But t onCl i ckedEvent asaparameter. The event carriesinside itself the new button state.

sendBut t onCl i ckEvent iterates over the registered listeners, calling their but t onCl i cked method. A
temporary internal vector is used during the iteration, because thei ni ti al Li st ener s vector might be
changed during the iteration by listeners calling directly or indirectly addBut t onCl i ckLi st ener or
renoveBut t onC i ckLi st ener.

WEe're on the homestretch. We have a method to register But t onCl i ckedEvent s, SO we need someone to
call it. The someone can be anyone. If you' re doing things the hard way (i.e. by hand) you might have the
listener register itself. If you're doing things the easy way (i.e. using an Application Builder like JBuilder), the
listener might be registered by the parent frame window of the button and LED. For the purpose of this
discussion, it doesn’t matter who registers the But t onCl i ckedLi st ener . The registration code needs to
look something like this:

MyButt on nmyButton = new MyButton();
LED | ed = new LEIX);
nyBut t on. addBut t onCl i ckedLi st ener (I ed);

Event Adaptors

While connecting objects together as in the previous example is not too complicated, the technique has a
problem: MyBut t on and LED are not completely generic. LED works only with MyBut t on and vice-versa. It
would be much preferable to have a way to code the two classes so they didn’t have that inter-dependency. The
Java solution is through event adaptors, which are objects that connect an event source with an event listener.
Adaptors make it possible to remove class dependencies from sources and listeners, but at a cost. The
dependency isn’t really eliminated, just moved into the adaptor. At least the class dependency isin only one
place.

When you connect objects together through events using an Application Builder like JBuilder, an adaptor class
is generated automatically, and code is created to hook the adaptor to the source and listener. Using the

MyBut t on example from above, JBuilder would create an Act i onEvent to represent the button click, and an
Act i onAdapt or to hook the button up with the parent frame. Remember from Figure 2 that Act i onEvent is
a built-in event. Assuming the parent frame window was called MyFr ane, the Act i onAdapt or code would
look likethis:

cl ass MyFrame_nyButton_Acti onAdapter inplenments ActionListener({
MyFrame adapt ee;
MyFrame_mnyBut t on_Act i onAdapt er (MyFrane adapt ee) {
t hi s. adapt ee = adapt ee;
}
public void actionPerforned(java. awm . event. Acti onEvent e) {
adapt ee. nyBut t on_act i onPer f or ned(e) ;

8th Annual Borland Developers Conference - 1997 Page 13

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 14

Understanding and Building Java Beans Components Ted Faison

The controls and the adaptor are created in the parent frame window like this:

cl ass MyFrame extends Decorat edFranme {
MyButt on nmyButton = new MyButton();
LED | ed = new LEIX);

public MyFrame() {
/1

nyBiJ.t. t on. addAct i onLi st ener (new MyFrane _nyButton_Acti onAdapter(this));

}
}

When you click the button, the adaptor calls the frame’s myBut t on_act i onPer f or med method, passing it
an Act i onEvent object. You write code in this handler to set the LED on or off:

cl ass MyFrame extends Decorat edFranme {
/..
voi d nmyButton_actionPerforned(java. am . event. Acti onEvent e) {
/] ...turn the led on

}
}

Adaptors can also serve other purposes. Rather than merely passing along an event from a source to alistener,
adaptors can multiplex or demultiplex events, serve asintelligent queues, manage event delivery based on
priority, and more.

Event Handlers in JBuilder

Event handlers are a powerful and simple way to customize a Bean. Application Builders like JBuilder display
the design-time event handlers to the devel oper as a tabbed page in the Property Inspector. To add an event
handler for an event, al you do is type the name of the handler in the Property Inspector. Better yet, just
double click the edit field next to the property. JBuilder automatically creates a handler by concatenating the
object name with the event name. For an object name but t on1, the act i onPer f or med handler would look
like thisin the Inspector:

v Ingpector - buttonl

|actinnF‘errurmed | hutton1_actionP erformed 1=

componentHidden
componentiloved
componentResized
compoanentShon
focusZained

focuslost
keyPressed
kevReleased
keyTyped
mouseClicked -

Fropeties 1 Events i

Figure 4 - The Events page for java.awt.Button in JBuilder.

8th Annual Borland Developers Conference - 1997 Page 15

Understanding and Building Java Beans Components Ted Faison

The handler is created as a method of the parent object. Say you have asimplej ava. awt . Fr ame window
called MyFr ame with aj ava. awt . But t on called but t on1, asin Figure 5.

: MyFrame [_ O]
button l

Figure 5 - A simple frame window.

Double clicking onthe act i onPer f or ned field in the Property Inspector causes JBuilder to create the
handler buttonl_acti onPerf or med asamethod of MyFr ane, like this:

cl ass MyFrame extends Decorat edFranme {
/...
voi d buttonl_actionPerforned(java. awm . event. Acti onEvent e) {
/1 add your code here...

}
}

The handler is passed an Act i onEvent parameter, describing the button event that occurred. The class
java. awt . event . Acti onEvent isused heavily in JBuilder applications, and is used anywhere a handler
can infer what happened without detailed event help. The class has two methods, get Act i onCode and

get Modi fi ers. An Acti onCode isjust astring set by the event source. In the example above, but t onl sets
the string to just... “button1”. Act i onEvent modifiers encode the state of the modal keyboard keys, such as
the SHIFT, CONTROL and ALT keys. The button handler in my example doesn’t really need to know what
event occurred, because it is obvious: | created the handler to process button clicks, and the handler doesn’t
care what modal keys are pressed. The only way the handler can get called isthrough aclick on but t on1, so
there is no doubt about what event occurred. Act i onEvent isjust aplain vanillaevent. It basicaly tells the
listener: your event occurred. The listener should know just what event thisis. Y ou could use

Acti onEvent’ s Acti onCode to carry additional information about the event, but JBuilder creates most of
the Act i onEvent s you'll be using, so al you'll normally get out of Act i onCode is the printable name of the
event source.

The event handler in MyFr anme isn't called directly from but t on1: JBuilder always uses adaptors to call
handlers. When you create an event handler, JBuilder creates an adaptor through which a method in the parent
object isinvoked by the event source. This follows the event-delegation model described earlier. Except for the
adaptor part (not exactly atrivial addition), the JBuilder event model is similar to the Delphi model.

Persistence

If you change the properties of a Bean using an Application Builder, you expect those changes to be saved
permanently somehow. The somehow part requires that Beans be persistent. In C++, persistence was supported
by aclass library, which invariably was vendor-dependent and always quite complicated. In Java, persistence
was deemed to be such a valuable feature that the Java folks decided to support it at the language level, a
decision that not only makes persistence vendor-independent, but practically inconspicuous in many programs.
Beans get their persistence essentially for free from the Java language. Persistence is available to any object
created using JDK 1.1 — not just Beans. Even though persistence is not a Beans topic per se, it is so important
that I'll discussit briefly.

8th Annual Borland Developers Conference - 1997 Page 16

Understanding and Building Java Beans Components Ted Faison

Meta Classes

Persistence is based on the ability to serialize things, i.e. to write objects out to a stream one byte at atime, and
be able to reconstruct objects by reading bytes from a stream. The concept is simple to understand, and not too
hard to implement. Writing Java objects to storage without requiring user code is accomplished with alittle
help from objects that understand the layout of Java objects. Associated to each Java class and interfaceisa
special object of typej ava. | ang. Cl ass, which is essentially a meta-class, i.e. it contains a description of the
class. C++ programs require macros to represent class meta-data. Visual C++ programmers are familiar with
the macros DECLARE_DYNAM C and | MPLEMENT_DYNAM C to support serialization. Each C++ vendor has a
proprietary set of macros to support serialization. Java has had meta-classes from day one, and the JDK 1.1
has added new features to support persistence. The implementation is so unobtrusive that novice Java
programmers don’t even know it’s therel

Any time you create a class, the Java system automatically createsa Cl ass object to go withit. The Cl ass
object is able to create a class from a class name (e.g. “j ava. MyBeans. MyFi r st Bean”), and can return a
list of each field and method used in the class. When you save a class to a stream, the Java system writes
information obtained from its C ass object followed by the object itself. The serialized Cl ass information
contains enough information for Javato later read the object back in and reconstruct it properly. Java serializes
Cl ass objects differently from other classes, to avoid infinite recursion.

Serializable classes

Java objects are not persistent by default. If you want persistence, you must derive a class from either the
java.io. Serializabl e interface or thej ava. i 0. Ext er nal i zabl e interface. The former provides
transparent serialization support, the latter gives you, the class author, complete control over how your classis
serialized. A simple persistent bean can be declared like this:

public class MyClass inplenments java.io. Serializable {
/..

}

By default, all fields of the class will be persistent. You can tell Java not to save afield by marking it with the
t ransi ent keyword. Any fields that are always initialized by the classitself should be marked t r ansi ent ,
such as:

public class MyPanel extends Panel inplements Serializable {

private transi ent bool ean acti ve;
public MyPanel () {active = false;}

}
Once you have a serializable Bean, you can stream it to afile very easily, like this:

MyPanel nyPanel = new MyPanel ();

Fil eQutputStream nyFile = new Fil eQut put St reanm(“ MyPanel Fil e.ser”);
Qut put Obj ect out put = new Qut put Obj ect (nyFile);

out put . writeCbject (myPanel);

out put. flush();

Y ou can use whatever filename and extension you want, of course, but the Java convention uses the extension

. ser for serialized beans. If you handle the file using your own code, the extension doesn’t matter, but if you
plan to package the component in a Java Archive (JAR), then the . ser extension isimportant. The

8th Annual Borland Developers Conference - 1997 Page 17

Understanding and Building Java Beans Components Ted Faison

Qut put Obj ect object controls the serialization process to a stream. Y ou can just as easily stream your objects
to aserial port or to amodem, by changing the object passed to the Obj ect Qut put constructor.

The simple statement

out put . writeCbject (myPanel);

packs alot of power. If myPanel contains references to other objects, those objects are also saved. If nmyPanel
is part of a network of objects, the entire network is saved. Java guarantees that it will save enough
information to restore every non-t r ansi ent fieldin aclass. If afield references another object, the other
object istagged with an internal handle, then Java saves both the object and the handle. The process repeats
recursively until all reachable objects have been saved.

Implementing the Ser i al i zabl e interface iswhat is required for a Java class to be persistent. But
persistence is not the only consequence of being Seri al i zabl e. What the interface really indicates is that a
classis capable of being broken down into a series of bytes, and can be reconstructed from a series of bytes.
Just where these bytes go or come from is not important to the class. Thisis good, because one very important
task that has nothing to do with persistence, but everything to do with serialization is passing Java objects over
the wire in a Remote Method Invocation (RM1), which isreally just aremote procedure call. Using alanguage
like C++, there is no end to the complexity and details of parameter marshaling, IDL interfaces, compilers and
what have you. In Java, any object that is serializable interface is auto-magically sendable over the wire. No
funny stuff happening under the table. Since Java knows how to take the class apart into bytes and put it
together again using standard serialization, persistent objects are also remotable.

If you have special requirements for the way individual fields are serialized, you can tag them t r ansi ent and
providewr i t eObj ect and r eadObj ect methods to write and read the object yourself. Say you have a

User Account classthat has a password field. Y ou wouldn’'t want the password to be written in clear text to a
stream. When the times comes to serialize User Account , you want to encrypt the password field. You'll need
to decrypt it on deserialization. The class might initially look something like this:

cl ass User Account inplenments java.io.Serializable {
transient private String password;
private void witeObject(ObjectCQutputStreamtheStreamn
throws java.io.|OException {}
private void readObject(java.io.Object!|nputStream theStrean)
throws java.l ang. Cl assNot FoundExcepti on,
java.io. | Cexception {}

}
User Account might read and write the encrypted password something like this:

cl ass User Account inplenments Serializable {
transient private String password;

/'l stubs for encryption/decryption nethods
String Decrypt(String theString) {return theString;}
String Encrypt(String theString) {return theString;}

private void witeObject(ObjectCQutputStreamtheStream
throws java.io. | OException {

/1l write the non-transient fields

theStream defaul t WiteQbject();

/!l wite the encrypted password
theStream writ eCbj ect (Encrypt (password));

}

private void readObject(java.io.ObjectlnputStream theStrean)
throws java. |l ang. Cl assNot FoundExcepti on,

8th Annual Borland Developers Conference - 1997 Page 18

Understanding and Building Java Beans Components Ted Faison

java.io. | CException {
/1 Read in the inherited stuff
t heStream def aul t ReadObj ect () ;

/1 read the encrypted password

String encryptedPassword = null;

encrypt edPassword = (String) theStreamreadObject();
password = Decrypt (encrypt edPassword);

}
}

| left out the details of the encryption/decryption logic. The important thing isthat Seri al i zabl e objects
don’'t have to do anything (other than implement the Ser i al i zabl e interface) to become persistent. If the
default persistence support doesn’t fit certain fields, you can provide your own read and write functions. Y ou
can call def aul t ReadObj ect and def aul t Wit eObj ect to handleall the non-transient fields of your
class, and never have to worry about reading and writing the ancestors, because Java takes care of that
automatically.

Externalizable classes

When you need to take complete control over what and how Java serializes a class, you implement the

Ext er nal i zabl e interface. Why would you need to take full control over seriaization? Say you wanted to
write your class capable of reading/writing a compressed version of itself. Maybe the class contains alot of
data, and you want to send it over a modem connection. Using the standard Ser i al i zabl e interface doesn’t
quite give you enough control, so you make the class Ext er nal i zabl e.

By having your class implement the Ext er nal i zabl e interface, you tell Javathat you intend to take charge
of serialization. You'll need to add special read and write methods to your class, and the Java I/O classes will
call these methods when necessary. To start with, your class might look like this:

cl ass MyConpr essabl eBean extends java. awt. Conponent
i mpl ements java.io. Externalizable {
public void witeExternal (ObjectQutput theCutput) {}
public void readExternal (Objectlnput thelnput) {}

}

When the Java 1/O system needs to serialize your bean, it will recognizethat isisn't aregular Seri al i zabl e
bean. Discovering that the bean implements Ext er nal i zabl e, it then invokes your bean’swr i t eExt er nal
or r eadExt er nal methods. Implementing these methods will generally require more work than the
equivalent wr i t eCbj ect / r eadObj ect methodsin the Seri al i zabl e interface, because the Java system
doesn’t automatically read or write any ancestors of your class. It is up to you to decide whether you want the
base classes to be streamed, and how.

Keep in mind that the built-in AWT and JBuilder classes don’'t implement Ext er nal i zabl e, SO
My Conpr essabl eBean can't read or write the ancestor using code like this:

cl ass MyConpr essabl eBean extends java. awt. Conponent
i mpl ements java.io. Externalizable {

public void witeExternal (ObjectQutput theCQutput) {
super.writeExternal (theCQutput); /1 this won’'t work!

/Il wite fields of MyConpressabl eBean
/...

}

8th Annual Borland Developers Conference - 1997 Page 19

Understanding and Building Java Beans Components Ted Faison

public void readExternal (Objectlnput thelnput) {
super . r eadExt er nal (t hel nput); /1 this won’'t work!

/'l read fields of MyConpressabl eBean
/...

}
}

You can’t call the ancestor’sr eadObj ect /wri t eQbj ect methods, because they take Obj ect | nput St r eam
and Qbj ect Qut put St r eamas parameters, respectively, and you don’t have those kinds of streamsin
readExt er nal / wri t eExt er nal . So how do your stream your class? The answer is usualy “the hard way”.
Some classes may not need to stream fields for any of their ancestors. In this case the task is simpler, making
My Conpr essabl eBean look perhaps something like this:

cl ass MyConpr essabl eBean extends java. awt. Conponent
i mpl ements java.io. Externalizable {

/1 assune all the class' data is in this array
byte[] data = new byte[100];

/'l assune these 2 nethods handl e the conpressi on/ deconpression
byte[] conpressedArray(byte[] theArray) ({

/1 pretend we return a conpressed array.. .

return theArray;

}

byte[] deconpressedArray(byte[] theArray) {
/1l pretend we return a deconpressed array. ..
return theArray;

}

public void witeExternal (ObjectQutput theCutput)
throws java.io. | OException {
/Il wite fields of MyConpressabl eBean
t heQut put . write(conpressedArray(data));
}

public void readExternal (Objectlnput thelnput)
throws java.io. | OException {

/'l read fields of MyConpressabl eBean
byte[] conpressedBytes = new byte[100];
t hel nput . readFul | y(conpr essedByt es) ;
data = deconpressedArray(conpressedBytes);

}

}

In this example, | assume that al the fields for MyConpr essabl eBean are stored in the byte array dat a.
Reading and writing of this array is performed using thewr i t e method of Qut put Obj ect andr eadFul | 'y
of I nput Qoj ect .

If your class needs to read and write fields from its ancestors, then you have to write your own code to
determine the fields of each ancestor, and read and write them yourself. Y ou would use the meta class

information supplied by j ava. | ang. Cl ass. get Fi el d to accessfields in each of the ancestors. See the
section Class Meta-Data below for information on how to do this.

Versioning

Objectsinvariably evolve with time. Y ou start out with one version, you debug it and ship it with your
application. The application is persistent, and saves its state when the user terminates it. When the application

8th Annual Borland Developers Conference - 1997 Page 20

Understanding and Building Java Beans Components Ted Faison

isrestarted, it uses the serialized data to resume where the user last l€eft it. Y our customer lovesit. Until you
make some enhancements. Y ou ship the enhancements and boom! When the user tries to start the app, the
system crashes. What happened? Simple, you have a versioning problem. When your new app tried to restore
itself using the old customer’ s data, it used data that didn’'t correlate with the new enhanced classes.

Versioning is the process of stamping serialized data with information that indicates the version of the saved
class. Versioning in Javais optional, but always a good idea to support. To version aclass, you add af i nal
field named seri al Ver si onUl Dto it, like this:

class MyClass inplenents java.io.Serializable {
/..
private static final |ong serial VersionU D = -3665804199014368530L;

}

The actual value of seri al Ver si onUl Dis not important in itself. It is a hash code that represents the class.

In C++ programs, you handled object versioning manually. Y ou tagged the stream with an arbitrary value.
Each time you made changes to classes that resulted in changes to the serialized data structure, you
incremented the version number. | don’'t have to tell you how easy it isto forget to bump the number after
making a change in the heat of a project deadline. Java takes over the process, and computes the version
number not using an arbitrary number sequence, but by using a 64 bit hash code computed from the class meta
dataitself.

When aclassis serialized, the Java 1/0 layer writes the version to the stream. When the classis read back, the
seri al Ver si onUl Dfrom the stream is checked with the value of the class being reconstructed. If the values
are different, the system recognizes a versioning problem and throws an | nval i dCl assExcepti on.

Restoring a Bean

Once a Java object has been saved in a stream, it can be read back. Reading objects is a bit more complicated
than writing, mainly because it involves identifying what type of object is stored in the stream and creating an
equivalent object in memory to initialize from the stream. The details are fortunately hidden from application
programs. To read a Java object, the following code will suffice:

Fil el nput Stream nyFil e = new Fil el nput Strean(“M/Panel Fil e. saved”);
I nput Gbj ect input = new | nput Obj ect (nyFile);
MyPanel nyPanel = (MyPanel) input.readQbject();

This example requires an explicit typecast, meaning you must already know the type of the object before you
read it in. Any objects that are streamed in with myPanel will be properly restored an initialized.

Application Builder Support

One of the most interesting features of Java Beans is the degree to which they support Application Builders.
The idea of RAD development is centered on the use of tools to make your work easier and faster. It then helps
if Beans have away of helping the tool do itsjob. What kinds of information does an Application Builder
need? Basically, it needs away to obtain from each Bean at design-time a description of the Properties,
Methods and Events that are available. Older component systems, like OLE, are not able to give this kind of
information, because COM interfaces possess no meta-data. To get any kind of information about an OLE
object, you must have accesstoiits. t | b Type Library file. The creation of Type Librariesis awkward,
requiring the use of a stand-alone Type Library compiler. To read the file, you need atool that understands the
binary structure of . t | b files. If you have the executable file (DLL) of an OLE component, but not its. t I b

8th Annual Borland Developers Conference - 1997 Page 21

Understanding and Building Java Beans Components Ted Faison

file, you're out of luck, because you can’'t generatethe. t 1 b using aDLL alone. Thisis not asmall problem,
especially since most of the OLE components out there are distributed without Type Libraries. The decision to
include Application Builder support in each and every Bean means the OLE situation will never occur with
Beans.

Introspection

Application Builder support was designed to make it simple to, implement for most Beans, requiring
essentially no work on the Bean developer’s part. The folks at JavaSoft didn’t want Application Builder
support to create a big overhead requirement for every Bean. Keep in mind that one of the basic principles
behind the Bean philosophy is simplicity (which usually means small footprints). On the other hand, there are
certain Beans that have really complicated properties, requiring elaborate Property Sheets. These Beans must
have away to show their own custom Property Sheets, bypassing the default property display mechanism.

To solve the problem, Beans use two techniques to support Application Builders: alow-level one, based on a
process called Reflection, and a high level one, based on explicit specification. The process of an Application
Builder obtaining meta-data from a Bean at design-time is called Introspection. Introspection is carried out
using either Reflection or explicit specification, through Beanl nf o objects.

Reflection

When an Application Builder is handed an arbitrary Bean, it must be able to somehow inspect the Bean and
determine its Properties, Methods and Events. First the Builder checks to seeif aBeanl nf o object is available
for the Bean. If not, the tool then analyzes the names of the Bean’s methods and checks to see if any names
follow certain naming conventions or design patterns. This is the Reflection mechanism.

Design Patterns for Properties

Properties come in different types and each type has its own design pattern. Simple properties must have
accessor functions whose signatures match the design pattern:

public <PropertyType> get <PropertyNane>();
public void set< PropertyNane >(<PropertyType> theProperty);

For example, a property named My Col or would be identified by the accessor functions:

public Col or get MyCol or();
public void set MyCol or (Col or theCol or);

Note that the <Pr oper t yType> and <Pr oper t yName> don’t have to be the same. The name of the property
isjust astring displayed in the property sheet. The type is the Java class that represents the property internally.
If only a getter accessor is found, then a property is assumed to be read-only, and similarly for the setter
acCcessor.

Boolean properties occur so often that they were given the special design pattern.

publ i c bool ean i s<PropertyNane>();
public void set<PropertyName>(bool ean t heVal ue);

A boolean property called Act i ve would have the accessors:

public bool ean isActive();

8th Annual Borland Developers Conference - 1997 Page 22

Understanding and Building Java Beans Components Ted Faison

public void setActive(bool ean theVal ue);

If MyBean had the Act i ve property, you would accessit like this:

MyBean nyBean = new MyBean();
i f nyBean.isActive()

/1 do sonething...
nyBean. set Acti ve(true);

Indexed properties are another special case. To access an indexed property you need to specify an index, so the
following design pattern is used:

public <PropertyType> get <PropertyNanme>(int thelndex);
public void set<PropertyNanme>(int thelndex, <PropertyType> theProperty);

To access the Col unm information for a grid Bean, the accessors might be:

public GidCol um get Col um(int theColum);
public void setCol um(int theColum, GidColum theCol umObject);

Design Patterns for Methods

There are no design patterns for methods. Any methods that don’t follow a known design pattern are
considered just...methods, meaning they are construed to not be Properties or Events. Methods are not usually
displayed in Property Sheets at design-time by Application Builders, because they are available to be called
only at run-time. An Application Builder might display a Bean’s methods in the context of a debug session,
perhapsin awWat ch or Eval uat e window.

Design Patterns for Events

Beans can generate two kinds of events: unicast and multicast. The unicast variety requires only one listener.
If an attempt is made to register other listeners, the Bean must throw a
java. util.TooManyLi st ener sExcept i on. Events use the following design pattern:

public void add<Event Li st ener Type>(<Event Li st ener Type> t helLi st ener);
public void renpbve<EventLi st ener Type>(<Event Li st ener Type> t helLi st ener);

where the <Event Li st ener Type> must implement the j ava. uti | . Event Li st ener interface. By
default, events are assumed to be multicast, unless the add accessor is declared to throw a

java. util.TooManyLi st ener sExcepti on. A couple of examples might be useful. Here is a unicast event
called Updat e:

public void addUpdat e(Updat e t heLi st ener)
throws java.util.TooManyLi st enersExcepti on;
public void renmpveUpdat e(Updat e t heLi stener);

Hereisamulticast event caled d i ck:

public void adddick(dick thelListener);
public void renoveC ick(dick thelistener);

Explicit Specification

8th Annual Borland Developers Conference - 1997 Page 23

Understanding and Building Java Beans Components Ted Faison

Y ou can make your Application Builder bypass the Reflection process altogether, if necessary. Say you have a
bean that requires an entire program (such as a Wizard) to be customized. A simple property editor panel is
just not sufficient. Y ou can hook your wizard into your Bean by creating a Beanl nf o class. If you have aBean
called MyBean, then you need to create a class called MyBeanBeanl nf o that implements Beanl nf o, like this:

public class MyBeanBeanl nfo inplements Beanlnfo {.}

Beanl nf o provides access to all kinds of information through its methods. By overriding these methods, you
can expose whatever information you want for your bean. The information includes the following:

BeanDescri pt or , which provides basic information about your Bean. A very important item
that aBeanDescri pt or canreturnisacCust oni zer . The folks over at JavaSoft have put a
great deal of effort into ensuring that Java Beans could be arbitrarily customized, without
imposing unreasonabl e burdens on simple Beans. A Cust oni zer alowsyou to specify a
complete GUI component, such asa j ava. awt . Panel , to customize a Bean.

An array of PropertyDescri pt or objects, giving a complete description of each property
availablein your Bean and in all of its ancestor classes.

An array of Met hodDescri pt or objects, giving a complete description of each method
availablein your Bean and in all of its ancestor classes.

An array of Event Descri pt or, giving a complete description of each event available in your
Bean and in all of its ancestor classes.

Providing a Beanl nf o object doesn't in itself disable the Reflection mechanism. A well-behaved Application
Builder (one that follows the Beans spec) is expected to check for Beanl nf o objects before launching into
Reflection. The Beans spec can’t prevent atool from using Reflection in the presence of aBeanl nf o object, or
force atool to use Reflection. The Beans spec provides only the objects necessary to locate information — it
doesn’t force one behavior or another onto Application Builders. Obviously vendors are well-advised to follow
conventions, but the Beans spec is not designed to force them, or even check that they do.

Class meta-data

Among the new features added to Javasince JDK 1.0.2 isachange in the specia classj ava. | ang. O ass.
The new class has been extended with methods to return detailed information about a given class, so builder
toolscan query j ava. | ang. C ass and use the information to populate forms showing the user a class
constructors, methods and fields. The addition was made not only for the benefit of Application Builders, but
also as part of the Java language support for serialization. The following code excerpt shows some of the
interesting features of j ava. | ang. Cl ass:

public final class Class inplenents java.io.Serializable {

public Field[] getFields() throws SecurityException {.}
public Method[] getMethods() throws SecurityException {.}
public Constructor[] getConstructors() throws SecurityException {.}

public Field[] getDeclaredFields() throws SecurityException {.}

public Method[] getDecl aredMet hods() throws SecurityException {.}
public Constructor[] getDecl aredConstructors() throws SecurityException {.}

8th Annual Borland Developers Conference - 1997 Page 24

Understanding and Building Java Beans Components Ted Faison

The first 3 methods return information about public items of a given class (or interface) and all its ancestors.
For example get Met hods() returnsan array of j ava. | ang. ref | ect. Met hod objects for each publ i ¢
method declared in a class.

The second 3 methods return information about all items (publ i ¢, pr ot ect ed, package and pri vat e) of a
given class or interface, ignoring any ancestors. For example get Decl ar edFi el ds() returns an array of
Fi el d objectsfor every field in agiven class, ignoring fields inherited from ancestors.

The meta-class information returned by j ava. | ang. Cl ass is encapsulated in the new classes
java.lang.refl ect. Met hod, java.lang.refl ect. Fiel dand

java.lang. refl ect. Construct or. These classes allow complete visibility of field types, method return
types, parameter types and so on. Application Builders can usej ava. | ang. C ass to get acomplete
description of everything that makes up a class. For example, the following code displaysin alist box the
fieldsof j ava. awt . But t on:

But t onControl nyButton = new ButtonControl ();
Cl ass nmyButtonClass = nyButton.getClass(); // get the object’s

/'l java.lang.C ass obj ect
java.lang.reflect.Field][] nmyButtonFi el ds = nyButtond ass. get Decl ar edFi el ds();

for (int i = 0; i < nyButtonFields.|length; i++)
listOFFields.add("Field [" +
nyButt onFi el ds[i].get Name() +
"] type = [" +
nyButtonFi el ds[i].get Type() + "1");

Thefirst 5 linesin the list box are:

Field [orientation] type = [int]

Field [imageFirst] type = [bool ean]

Field [image] type = [class java.aw .| mge]
Field [i mmgeNane] type = [class java.lang. String]
Field [label] type = [class java.lang. String]

The following code snippet fills alist box with aBut t onCont r ol 's methods, their return types, and their
parameter lists:

But t onControl nyButton = new ButtonControl ();
Cl ass nyButtonCl ass = myButton. getd ass();
java.lang.refl ect. Met hod[] myButtonMethods = nyButtond ass. get Decl ar edMet hods() ;

for (int i = 0; i < nyButtonMethods.length; i++) {
listl. add("Method " +
nyBut t onMet hods[i]. get Name() +
return type = " +
nyBut t onMet hods[i] . get ReturnType());
Class[] paraneters = nyButtonMethods[i]. getParaneterTypes();
if (parameters.length == 0)
listl. add("Paraneter list: none");

el se {
listl.add(" Paranmeter list =");
for (int j = 0; j < paraneters.length; j++)
listl. add(" " + paraneters[j].getNanme());

}
listl.add(""); // add a blank Iine after each nethod
}

The following shows the first few lines of output from the program:

Met hod setOrientation return type = void

8th Annual Borland Developers Conference - 1997 Page 25

Understanding and Building Java Beans Components Ted Faison

Paraneter |ist =
i nt

Met hod getOrientation return type = int
Paraneter list: none

Met hod setlnmageFirst return type = void
Paranmeter list =
bool ean

Meta datais a wonderful thing to have at run-time. C++ programmers were forced to use macrosto get it. Not
only do macros differ across vendor implementations, but often make code very hard to read and even harder
to debug. | wish | had a penny for every programmer that accidentally single-stepped into a Visual C++
message map macro, only to waste hours looking up useless macro details in the documentation. Java gives
you standard meta-data right out of the box, making it much simpler to support commonly used features like
serialization. Keep in mind that meta-data support was added to the core JDK, so meta-data is available for
any Java aobject (not just Beans).

Property Editors

Many Beans have properties that require special handling, meaning they can’t be set by simply typing some
text or selecting avalue from alist. For example afancy grid Bean with al ayout Opt i ons property might
want to display a picture of agrid. Clicking on specific areas of the grid might allow the user to turn on/off
layout features, such as the row lines, the column lines, the column headers, etc. Y ou would probably
implement this editor asaj ava. awt . Panel , with embedded bitmaps and other controls. The Java Beans
spec allows you to hook your own Property Editors into the system by defining an editor class for your special
properties. An Application Builder locates the editor by using a simple design pattern: for a property

MyPr operty, it looks for aclass named MyPr oper t yEdi t or . Actually, things are slightly more complicated.
To keep application builders and vendors all on the same page, the JavaSoft folks created a standard class to
locate property editors: j ava. beans. Propert yEdi t or Manager . The Beans spec alows you to register
editors for your own custom properties. The registry they are put into is not some hairy operating-system-level
monster like the Windows Registry. I’ ssimply aj ava. uti | . HashTabl e that stores key-value associations.
The key is the class you want to register an editor for. The value part is the editor class. The hash tableisa
field of Pr opert yEdi t or Manager . The Beans Pr oper t yEdi t or Manager triesto locate an editor for a
classin three steps:

1. It checksthe Propert yEdi t or Manager registry. You register editors by calling the method

regi sterEditor(Cl ass target Type, C ass editorC ass)

of classj ava. beans. Proper t yEdi t or Manager . Calling the method a second time for a given editor
unregisters the editor.

2. It searches for a class whose name is the same as the class, and ends in “Editor”. For aclass Col or, it
searches for the class Col or Edi t or .

3. It searches for a class whose name is the same as the bean that owns the property, and ends in “Editor”.
For example, assume you have a bean MyBean with a property of type Longi t ude. The Beans
Pr opert yEdi t or Manager will search for the class MyBeanEdi t or . The search path defaults to
sun. beans. edi t or s, but you can change it by passing an array of strings to
j ava. beans. Pr opert yEdi t or Manager . set Edi t or Sear chPat h.

8th Annual Borland Developers Conference - 1997 Page 26

Understanding and Building Java Beans Components Ted Faison

The BDK comes with built-in editors for all the standard types. They form the following hierarchy:

Pr opert yEdi t or Panel
| PropertyEditorSupport
— Bool Edi t or

—— Nunber Edi t or
L StringEditor

— Col or Edi t or
L Font Editor

Figure 6 - The built-in property editors.

Editors comein 3 basic flavors: String, choice and custom. A String editor lets you type in avalue for the
property, using an Edit control. The following figure shows a string editor for the title property of a Frame, as
shown in the JBuilder Property Inspector:

i Inspector - Sample.MyFrame

menuBar

resizable [

size 400, 300 L
Jtitle | WyFrarme =]

Properties | Events |

Figure 7 - A string editor in JBuilder.

A choice editor presents the user with alist of options to choose from. Boolean values are ssmple properties
edited using this type of editor, which looks like thisin JBuilder:

i Inspector - Sample.MyFrame

resizable
size | 400, 300

titl | MyF rarme L
[visice T |-

Properties | Events |

Figure 8 - A choice editor in JBuilder.

A custom editor usesits own panel, so it doesn’t show up in the Property Inspector window. A custom editor
lets you display anything your bean needs. A custom editor isindicated in the JBuilder Property Inspector by
an ellipsis button, like this:

8th Annual Borland Developers Conference - 1997 Page 27

Understanding and Building Java Beans Components Ted Faison

i Inspector - Sample. MyFrame

el T et

background | ciriTeod
hounds |0,0,400, 300
client

Properties | Events |

Figure 9 - The ellipsis button, indicating a custom property editor.

Clicking the ellipsis button opens the full property editor. The Col or Edi t or isan example of a custom
editor. Under JBuilder, the editor looks like this:

backaround

i RGE { HSB

] 1 Canceli Help;

Figure 10 - The ColorEditor displayed under JBuilder.

Customizing a Java Bean

In C++, the only way to customize a class was to derive a new class from it. Thisis afine model, but often
there are cases when you need to change a class in a minimal way. Creating an entirely new classis alot of
work —in fact too much work for something astrivial as changing the text color of a button from black to red.
Java builds on the lessons learned with Visual Basic and Delphi to allow trivial changes to be accomplished
through persistent properties. To create a button with red text bean, you just take the standard one, change its
color and save it. Changing propertiesis certainly the easiest way to customize a Bean, and is often done
within the context of an Application Builder, with a property editor. Figure 11 shows the property inspector for
a JBuilder button.

8th Annual Borland Developers Conference - 1997 Page 28

Understanding and Building Java Beans Components Ted Faison

+ Ingpector - button?
hounds 235,103,592 23 ~
constraints 235,103, -1, -1
cursor
enabled frue
font "Dialog", 0,12
foreground red
lahel FemuoveString
locale
location 235,103 —_
SiZe 92 23
visible frue =]
Properties | Events |

Figure 11 - Changing a simple bean property using properties.

The next level in customization that doesn’'t require deriving new classes is through event handlers. Beans use
the good old event-delegation model -- afancy expression for a simple concept. In C++, if you have some
class to which you want to add an event-handler you are forced to derived a new class to handle the event. As
with properties, deriving classesis fine and well if you intend to add a significant amount of functionality, but
for simple changesit is just too much work. Say you want your red button to be used to insert the text in an
Edit control into alist box. The hard way isto derive aRedBut t on classfromj ava. awt . Butt on and add a
mouseDown handler, something like this:

public class RedButton extends java.aw.Button {
publ i ¢ bool ean nouseDown(Event evt, int x, int y) {
/] ..do sonet hing
}

}

The easy way isto use delegation. Instead of deriving classes, you delegate event processing to another class.
Stated differently, why do the work in one class if there is another class that can do it for you?

Creating a new Java Bean

If you develop applications using Java Beans, probably the most central activity will be creating new Beans.
Often you will be able to get by using built-in beans and changing their properties. You can build al sorts of
dialog boxes using standard JBuilder beans. When you can’t get the needed features this way, it’s coding time.
Y ou have two options for creating beans:. starting from scratch and starting from an existing bean. Starting
from scratch is quite a bit more work, since you can’t leverage any other class' code. It is by far more desirable
to start from existing bean, if at al possible. The whole idea of object-oriented programming is reuse. Reusing
code minimizes your effort and lets you start from a base or (supposedly) debugged code. Fortunately, JBuilder
comes to your aid when creating new beans. With its built-in wizards, it takes most of the cut-and-paste grunt-
work out of the process.

Creating a bean from scratch

There aren’t too many applications out there that can be built entirely using existing beans, or classes derived
from them. It doesn’t take a lot of imagination to think of a situation. Take the good old Enpl oyee class that

8th Annual Borland Developers Conference - 1997 Page 29

Understanding and Building Java Beans Components Ted Faison

lurks the pages of practically every book on OOP. What bean would you create an Enpl oyee from? Probably
none, so you create Enpl oyee from scratch. Exactly what from scratch means will depend on what your
Enpl oyee does. If your want it to show up as a displayable object on forms, then you will probably derive it
fromj ava. awt . Conponent . At the very least, you derive it from nothing, which by default makes

j ava. | ang. Obj ect the ancestor.

The easy way to create your new beansis viaawizard. JBuilder has one that looks like this:

Mew Java File

Package: ; Sample

Class Mame:

File Mame:

Extends: 1

;M generate Header comments
[public

17 Generate default constructor
[Generate main fuction

ak Cancel Help

Figure 12 - The JBuilder wizard for creating new beans.

By leaving the Extends field blank, the wizard creates a class with j ava. | ang. Qbj ect asthe ancestor,
producing something like this:

package Sanpl €;

class Myd assl {
public Myd assl() {
}

}

Ain't much in there! Y ou can expect to do alot of work, if you plan to have the bean do much of anything.
Most of the time, you'll be adding PME to your beans. That’s Properties, Methods and Events. In case you
dozed off after the paper’ s first paragraph, properties are fields that can be accessed through getter and setter
functions, and can be shown on property sheets like JBuilder’ s Property Inspector. Methods are where al the
code for your bean resides. Methods don’'t have any standard features that lend themselves to automatic
generation, so you' Il spend a considerable amount of time coding them. Events are special methods that have
add and remove accessors. Events can be extracted from your bean with an Application Builder, and displayed
in a Property Sheet. JBuilder displays the events for a bean on the Events tab of the Property Inspector.

Starting from an existing bean

8th Annual Borland Developers Conference - 1997 Page 30

Understanding and Building Java Beans Components Ted Faison

You don’t actually have to use a bean as the ancestor. Any Java object will do, although bean ancestors will
obviously have more code to reuse in terms of Application Builder and PME support. The biggest choice to
make is which class to derive from. Sometimes the choice is ssmple, but not always. Say you plan on creating a
new clickable image. Do you inherit from regular awt classeslikej ava. awt . But t on and

j ava. awt . Panel , or use beanslike bor | and. baj a. control . Butt onControl or

bor | and. baj a. control . FancyPanel ? It all depends on what your bean is going to do. Once you've
decided, the JBuilder Class Wizard helps you crank out the starting code for your bean. Say you decide to
inherit from bor | and. baj a. cont r ol . FancyPanel . Here'swhat your initial bean’s code would look like:

package MyControls;
i nport borl and. baj a. control s. *;

cl ass Myd i ckabl el mage ext ends FancyPanel {
public Mydickabl el mage() {
}

}

Again, not too much to start with, but remember there’s all that code in the ancestor to reuse.

Unleash those wizards

Now you want to override some methods in the ancestor, such as nouseDown. JBuilder has all sorts of wizards
to help you develop Java code. There is one that shows you all the ancestors of your class, with the methods
available in each. All that information is made available thanks to the built-in Java meta data classes. Imagine
all theinformation you get without even a hint of amacro! The JBuilder Override Wizard looks like this:

i Ovemide Inherited Methods
Class Mame ;MyCIickablelmage =]
Methods
E-Inherited Classes ﬂ

F-borland.baja.control FancyFPanel

java.awt Fanel

F-java.awt Container

E-java.awt. Component

—action(Event, Object)

----- add{Fopuphenuy)
§----addCl:umpl:unentListener{CDmpDnentListener}
----- addFocusListener(Focuslistenen

i add KeyListener{keyListener) ; _j_*_]
1 3

Ik 1 Canceli Help i

Choose the methods that vou want to override

Figure 13 - The JBuilder wizard for overriding methods.

8th Annual Borland Developers Conference - 1997 Page 31

Understanding and Building Java Beans Components Ted Faison

Y ou check the ancestors and find anouseDown event handler inj ava. awt . Conponent . You select it and
presto! You get anew method for MyCl i ckabl el mage that looks like this:

publ i c bool ean nmobuseDown(Event parml, int parn2, int parnmB) {
/1 TODO override this java.aw . Conponent net hod;
return super.nouseDown(parml, parn2, parnB);

}

Pretty standard stuff, if you' re used to working with common C++ IDEs like Visual C++ or Borland C++. You
implement the mouse handler, then you need aPai nt method to dray your image. Back to the JBuilder
wizard. You locate aPai nt method in bor | and. baj a. control . FancyPanel . You select it and you get a
method looking like this:

public void paint(Gaphics parml) {
/1 TODO override this borland. baja.control.FancyPanel nethod;
super. pai nt(parnil);

}

The wizard generates as much code asit possibly could, given the information provided. What if you can’t
find amethod to override? No problem: you write a method that doesn’t override anything. Nothing magic
about it. JBuilder comes with a variety of different wizards, to give the most support it can for the various tasks
you'll probably engage in. For example there is a multi-page Applet wizard that |ooks something like this:

Applet Wizard: Step 1 of 3 i
-Applet Class
Package: | MyControls
Class: | Applett
File: ; CAJBUILDERwmyprojectsiUIntitled 1y C ontrolsiapplet
—Applet Style

[¥ Generateverbose camme [V Canrun standalone

iV Generate header comimel ZV Generate standard metho

= Hagk: Mext = Finish Cancel Help

Figure 14 - The first page of the JBuilder Applet wizard.

8th Annual Borland Developers Conference - 1997 Page 32

Understanding and Building Java Beans Components Ted Faison

There is also a multi-page Application Wizard, for creating brand new applications. The first page looks like
this:

Application Wizard: Step 1 of 2

~Application Class

Package: | MyControls

Class: | Application1

File: ; CAJBUILDERwmyprojectsiUIntitled 1wy C ontrolsi&pplic

=Application Style

[¥ Generate verbose comments

[+ Generate header comments

= Hack Mext = Finish Cancel Help

Figure 15 - The first page of the JBuilder Application Wizard.

There is yet another wizard to help you implement an interface in your class. It looks alot like the Override
wizard:

! Implement Interface

Classes: ihﬂyCIickablelmage :_j

Available Interfaces:

E-Interfaces =
H-java.awt”
-java. awt event.
=]

ava.awtimage®
ava.in®
avalang®

] i Canceli Help

Figure 16 - The JBuilder Interface Wizard.

8th Annual Borland Developers Conference - 1997 Page 33

Understanding and Building Java Beans Components Ted Faison

The idea here is that you search for an interface by expanding the items in the Available Interfaces list. When
you select an interface, JBuilder adds some code to your Java object, which doesn’t necessarily have to be a
Java Bean. Hereis how class Mydl i ckabl el mage looks after implementing thej ava. awt . Shape interface:

class Myd i ckabl el mage ext ends FancyPanel inplenents Shape {
public Mydickabl el mage() {

publ i c Rectangl e getBounds() {
/1 TODO i npl enment this java.awt. Shape net hod;
}

}

The wizard not only adds the selected interface to the list of ancestors, but also adds stubs for each method
inherited from the interface. Not rocket science, but definitely a useful feature that saves you from having to
manually lookup all the methods for each interface you implement.

The last wizard is the Project Wizard, a multi-page beast whose first page looks like this:

Project Wizard: Step 1 of 1 i
~Project
File: i COAOJBUILDER mvprojectsiUntitled 20 n Browise... i
Title: | Mty Project
Author: | Ted Faison
Company: ; Faison Computing Inc.
Description: {ImageBrowsed 2
! 31-1
= Hack: [dEw = Finish 1 Cancel 1 Help

Figure 17 - The first page of JBuilder’s Project Wizard.

The project wizard works similarly to the AppWizard of Visual C++ or the AppExpert of Borland C++.
Again, nothing absolutely new here. JBuilder hasn’t invented everything from scratch. It builds on the lessons
learned with from Borland C++ and Delphi.

8th Annual Borland Developers Conference - 1997 Page 34

Understanding and Building Java Beans Components Ted Faison

Comparing Java Beans with ActiveX

If JavaBeans is the specification for a new component architecture, it makes sense to see how it compares with
other existing component models. Because ActiveX isthe one most widely used in the Windows world, 1I'll
discuss briefly how Java Beans and ActiveX compare.

For starters, ActiveX istoo complicated! A two-year-old could tell you that much. ActiveX controls are built
on top of the Microsoft Component Object Model (COM). If ActiveX isbased on afirst generation component
model, Beans is definitely 2™ generation. COM objects were designed from the start to be hand-programmed.
COM objects don’t possess any meta-data, and contain little or no information that might help an Application
Builder. COM objects don’t have functions that return alist of the interfaces it supports. No functions
returning alist of the functions supported by a given interface. No one to call to get parameter list descriptions
or other valuable information. The OLE approach isto use separate binary files, like Type Library (. t | b)
files. Because the . t | b file must be generated using a specia stand-alone compiler, there is the risk you (the
component develop) forget or even decide not to createa. t | b file for distribution. See how many Type
Library files you can find for the Microsoft products that are OLE servers (like Word, Excel et similia)...
Moreover, even if you had a Type Library, good luck in writing a quick function to decode its contents.

Okay, so ActiveX is complicated. Do users other than developers care what goes inside a component ? Y ou
bet, because where complicated objects go, big ones follow. These days of Web-mania and anemic modem
bandwidths, web surfers are very conscious about page download times. If you stick a hairy old ActiveX
control on a page, chances are the download time will shoot from seconds to minutes. The truth is that
ActiveX controls are big. Just go check the size of your favorite 10 ActiveX controls, and tell me how many
are smaller than 100K. You'll probably find a few in the megabyte range. Moreover, the size of an ActiveX
DLL may only be part of the control’s actual footprint. The control probably uses a slew of other DLLs. Itis
quite common for ActiveX controls to pull in support DLLs extending the memory footprint into the
megabytes. In boxing terms, ActiveX is definitely a heavyweight, but big isn’t better in the software business.

In contrast, Java objects in general, and Beans in particular, were designed with small footprint in mind from
the very beginning. Beans are frequently in the 5-10 KB size. How is this possible? Simple, Beans get a big
boost from the Java runtime environment, which eliminates the need to add trivia stuff like file 1/O or system-
level routines to each and every Bean. Drawing support, network support, file support... it’s all provided at
runtime by the Java environment, or by a small number of tiny Java objects. Y ou don't have to statically or
dynamically link a zillion libraries with your application. As a simple example, take alook at the sample
program j ava\ denos\ Mol ecul eVi ewer \ XYZApp. cl ass inthe JDK directory. It is aviewing program
that displays one of three organic molecules in 3D. Using the mouse, you can rotate the moleculesin 3
dimensions. The whole program is about...12KB. Y ou can’t much more light-weighted than that! Reminds
me of the days of Forth, that good ol’ language that compiled down into almost nothing. How big would the
XYZApp program be if done with ActiveX controls? | rest my case.

8th Annual Borland Developers Conference - 1997 Page 35

Understanding and Building Java Beans Components Ted Faison

Y ou want more? Let’ stalk security. Y ou download a Web page with embedded ActiveX contrals. Y our
browser pops open a dialog box that looks something like this:

Authenticode[tm] Security Technology

Do pou wish toinstall and run Microzoft Web M avigator
Active Contral?

Click each link below before relying on this certificate,

Microsoft Web Navigator ActiveX Control
g pabished by

Microsoft Corporation
gs g commercial publisher under credentials Issied by

VeriSign Commercial Software Publishers CA

Expires: 7/29/97

W

Ir the future, do not show this meszage for zoftware published by
[Microsoft Corporation
™ any publisher with credentials from YeriSign Commercial

Software Publishers CA Advanced.. |

Figure 18 - The Code-Signed Certificate used by downloaded ActiveX controls.

The system is asking you whether you trust an ActiveX control embedded on the Web page. What do you do?
How do you know you can trust it? Assuming you would entrust your life to the company that created a given
control, what if the control were buggy? Maybe it has a bug that crashes your system on every 57" keystroke.
Maybe it contains a virus that waits for you to run your home-banking program. When you do, it silently
withdraws some money from your account and sends it to a European bank. Don’'t laugh: a German hacker
group publicly demonstrated such a virus-infected ActiveX control recently

The big problem with ActiveX security isthat it is based on the notion of trust and trustworthiness, stuff hard
to come by in these days of viruses. Even worse, Microsoft puts the burden of decision of trust on the end user.
It would be bad enough if al end users were software techies, but most users don’t have a clue about
technology. It is scary enough for them to have to boot their computer. 1’1l bet my grandmother wouldn’t tell
the above dialog box from a New Y ork Stock Exchange certificate.

The fact is that no one can tell you for sure whether an ActiveX control will cause trouble in your system or
not, and | don’t care who the publisher is. Java, on the other hand, was designed to deal with security from the
very beginning. The entire language is built on top of the so-called sand-box security model. When you run
Java code that was downloaded, a virtual sand-box is placed around the program. Every instruction of that
program that deals with sensitive areas, such asfiles or system calls, is runtime checked by the Java Security
Manager. This guy makes a drill sergeant look tame. Nothing, and | mean nothing gets done unless the
Security Manager approvesit. You, the end user, have nothing to do with any of these decisions. If your Java
applet originated from outside your system, it is sand-boxed, otherwise it can do anything it wants. I'll let you
decide whether you prefer the ActiveX or Java security model ...

Next feature: platform independence. This one' s a no-brainer. ActiveX was designed for the Windows
platform. Period. There are packages that let you run ActiveX code on Macs, but you take a runtime hit, and

8th Annual Borland Developers Conference - 1997 Page 36

Understanding and Building Java Beans Components Ted Faison

runtime performance is really the only areas in which ActiveX outshines Java. At least on the Windows
platform, ActiveX controls are fast. Just as fast as any other code running on the machine. Java code is
normally not as fast, unless you have a Just-In-Time (JIT) compiler. Using J T, the system compiles a Java
object’ s bytecode into native machine language when it is loaded. Thereis a small up-front penalty for the
compilation, but after that your object runs at native speed. To be perfectly honest, Java programs generally
run quite a bit slower than native-compiled programs. Even with JIT compilers, the overall speed of a Java
program is lower than an equivalent ActiveX control. On the other hand, Javaistruly platform-independent.
Java code runs anywhere there is a Java Virtual Machine (JVM) and you'll have to look pretty hard to find a
major platform for which aJVM isn't available.

Conclusion

To wrap this whole discussion up, Java Beans are here and here to stay. Beans are not out to eliminate the
competition (read ActiveX, CORBA and company), but to give devel opers the means to use an advanced
component model where runtime performance is not at a premium. Y ou can fallback on native models like
ActiveX where speed is essential. Java Beans represent a generation leap in software development, primarily
because the spec was written specifically in favor of Application Builders. Beans allow you to develop high
quality software quickly, because they bend over backwards to help your favorite Builder make your software
development job easier. The Java language was designed from the start to be simple and lightweight, and the
Java Beans spec follows that same tradition of elegance.

8th Annual Borland Developers Conference - 1997 Page 37

