
Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 1

Understanding and Building Java Beans Components

Author: Ted Faison, Faison Computing Inc.

Type: Preconference Tutorial
Track: JBuilder

Short Description

An introduction to the Java Beans specification and Java Bean development. Examples are shown using
Borland JBuilder as an example of an Application Builder tool to develop beans.

Abstract

Rapid application development (RAD) is the goal of all developers. The initial JDK 1.0.2 did not support RAD
programming environments, lacking sophistication in the areas like application builder support and
component-software packaging. Java Beans changes all that, poising Java to become the standard development
language for the next decade. The Beans spec allows tool builders to create and reuse Java components in a
RAD application-builder framework. Beans leverage many of the design patterns that have recently gained
much attention, such as the Event model, property introspection, persistence and others. This paper gives an
overview of Java Beans and shows how they can be used to accelerate software development.

Overview

Java Beans represent that latest attempt at building a better component model. Why do we need yet another
model? We already have ActiveX for Microsoft Windows platforms, OpenDoc for the Macintosh,
SOM/DSOM for OS/2 and others for just about every major platform. These existing models suffer from two
main problems: they are platform-dependent and they are too complicated to use from the programmer’s
perspective. The fact that OLE is still considered an arcane system, even after several years from its release, is
testament to the difficulties programmers encounter when approaching OLE in general and ActiveX in
particular.

The Java Beans spec was written to address platform neutrality and programmer learning-curve-burnout from
the start. The neutrality is achieved by using Java as the building language. To keep Java Beans simple, the
designers made conscious design tradeoffs at every level, to provide as much flexibility and power as possible
without creating a monster. One important decision that enormously simplifies a programmer’s job was to
incorporate support for object persistence directly at the language level. Java is the only major language to
offer this feature. When you develop a Java Bean, it is persistent almost by default.

Java Beans are designed to be easy to use and easy to customize. Delphi and Visual Basic programmers are
already familiar with Property Inspectors, which allow you to change the properties of an object. Beans offer
the same type of support. Additional changes can be made to a Bean by adding customized event handlers. If
changing properties or adding methods is still insufficient to achieve the desired goal, an entirely new class
can be derived from an existing Bean and customized to your heart’s content.

But no component is completely useful by itself. It is the interconnection of components that allows you to
build real systems. The Java Beans spec was written to facilitate the interconnection of Beans, using a new
technique known as the Event/Listener model. Beans can be interconnected with little effort using hand-

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 2

written code, but the preferred approach is to use a third party Application Builder, such as Borland JBuilder.
Using a tool not only makes the interconnection process simple and fast, but also robust. This doesn’t preclude
bugs, but certainly reduces the occurrence of silly errors. Java Beans can also be connected to CORBA
compliant ORBs, using so-called bridges, which are special components that translate Bean-jargon to
CORBA-speak. Or, if you’re really into CORBA, you can develop CORBA-compliant Beans using the Java
IDL compiler. The Java motto tells it all: Write Once, Run Everywhere!

What Java Beans are not

From the above discussion it might be tempting to deduce that Beans are the successors to ActiveX, OpenDoc
and all other current component models. Not so. Beans are designed to be used with and in addition to existing
component models. To prove this point, the JavaSoft folks and a number of third party vendors offer
technologies to allow Java Beans to connect with ActiveX, OpenDoc or other component types. There are also
special wrappers you can use to package a Bean as an ActiveX, OpenDoc or other component.

Beans are also not designed for real-time applications. Being Java components, they run in the interpreted
environment of the Java Virtual Machine, and are necessarily slower than their ActiveX or OpenDoc
counterparts. It would generally be a bad choice to use Beans to implement the kernel of a real-time operating
system, or to create device drivers.

Moreover, Beans are designed to be small, but not extremely small. It wouldn’t be very efficient to create
Beans for scalars, with incarnations like BooleanBean or CharBean. Beans are designed to encapsulate the
level of functionality typically associated with class objects, which have several properties and possibly several
event handlers that can be modified.

Anatomy of a Java Bean

Java Beans are essentially black-box entities that have built-in Application Builder support. A Bean is
normally customized when used in an application. The way it can be customized involves 3 fundamental
categories: Properties, Methods and Events (PME). Beans are often described as having a PME model. If a
Bean can’t be customized using PME changes, then only option is to use it as the ancestor for an entirely new
class.

Properties

Properties have become popular with the advent of Visual Basic and Delphi, and even OLE automation.
Properties are attributes you can change with scripting languages like Visual Basic or JavaScript, using
assignment-statement semantics, such as:

myObject.Color = red;

or

color = myObject.Color;

Underneath the pretty syntax, accessing a property involves the invocation of getter or setter functions,
collectively called accessors. Java properties aren’t declared explicitly. They are defined by the signatures of
their accessors. Given a property of type SomeProperty, the getter function will have the signature

SomeProperty getMyProperty();

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 3

and the setter function will have the signature

void setMyProperty(SomeProperty theProperty);

The class myBean might have accessors that look like this for a property named Color:

public class MyBean {

 private Color color;

 public Color getForegroundColor() {return color;}
 public void setForegroundColor(Color theColor) {color = theColor;}

}

Because accessing properties involves method calls, side effects are possible. This is good, because assigning
new values to a property can trigger other code that might be required to execute when the property is
changed. For example the following code increments a counter every time the Color property of MyBean is
changed:

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 4

public class MyBean {

 private Color color;
 private int colorChanges;

 public void setColor(Color theColor) {
 color = theColor;
 colorChanges++;
 }
}

Side effects can be much more extensive. For example, a grid control might have a property called
ColumnCount. Assigning a new value to it would cause the grid to internally change the column count,
reorganize its cell data in some way, then repaint the entire control with the new number of columns.

Properties are a natural and easy way to change the state of a Bean. Properties let you change attributes with
simple assignments, and relieve you from having to know the number and order of parameters in a method
call, worrying about values returned by a method call, or dealing with exceptions. Properties also lend
themselves eminently to manipulation in an Application Builder. Property Sheets can be used, as in JBuilder,
to allow developers to change basic attributes of a Bean without the need for recompilation or linkage of the
component. Not only are properties simple to use, but setting them can cause changes to a Bean that are visible
immediately at design time.

Indexed Properties

Some properties are not simple types, but occur as arrays. For example, a grid might have an array of Column
objects, each of which stores attributes like the column Title, the TitleFont, the TitleColor, etc. To
access a Column requires supplying the index of the desired column. Properties that are accessed through an
array index are called Indexed Properties. The index must always be an integer. Assume the Column and
Grid classes were defined like this:

public class Column {

 private String title;

 public String getTitle() {return title;}
 public void setTitle(String theTitle) {title = theTitle;}
}

public class Grid {

 private Column columns[];

 // accessors to individual Columns
 public Column getter(int theIndex) {return columns [theIndex];}
 public void setter(int theIndex, Column theColumn) {
 columns[theIndex] = theColumn;
 }
}

You could read and write the Title for column 3 with a Java-aware scripting language like this:

grid.Column[3] = “New Title”;
String title = grid.Column[3].Title();

Indexes are checked at runtime, and a java.lang.ArrayOutOfBoundsException will be thrown is
necessary.

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 5

Bound Properties

Because objects are generally interconnected, it is sometimes necessary for property changes in one object to be
signaled to other objects. Say one object A encapsulates the User Preferences of your application. Another
object B might handle the painting of a window. If the user changes the selected background color for your
application through object A, then object B needs to notified so it can update its background as well.

A Bound Property in Java is a property that signals interested objects when it is changed. The object that the
property belongs to is called the property-change event source. The signal sent to interested objects is called an
event. The objects receiving the notifications are called property-change event listeners. In order for an object
to receiver property-change notifications, it must implement the PropertyChangeListener interface, like
this:

class MyListener implements java.beans.PropertyChangeListener {

 // this method is called when a property is changed
 void propertyChange(PropertyChangeEvent evt);

 // ...
}

The listener must then register itself with the event source by calling the method

public void addPropertyChangeListener(PropertyChangeListener theListener);

To stop receiving property-change notifications, objects can call the following method of the event source:

public void removePropertyChangeListener(PropertyChangeListener theListener);

For more information about events, sources and listeners, see the section below entitled The Event Listener
Model.

Keep in mind that you don’t declare individual properties as bound, per se, using some new Java keyword. A
bound property looks like any other property. When a property is changed, the setter method sends the
property-change event if the property is bounded, otherwise it doesn’t. To see which properties of a class are
bound, you have to actually look at the source code for each property setter function.

Another important thing is that the property-change notification object carries information telling you which
property was changed, its previous value and its new value. The event is fired by the property setter method, by
calling the propertyChange method for each registered listener. Because there can be more than one listener
for a property change, you need a container to keep track of all the listeners. When the time comes to fire the
event, you iterate over the container and send the event to each listener in it.

Or you can do it the easy way. Because managing collections of listeners is such a common task, the JavaSoft
folks implemented an ad hoc class called PropertyChangeSupport to handle all the details of managing
collections of listeners. An object with bound properties instantiates a PropertyChangeSupport object, and
delegates all property-change notifications to it, like this:

public class MyBean {

 private Color color;
 private java.beans.PropertyChangeSupport propertyChangeListeners =
 new java.beans.PropertyChangeSupport(this);

 public Color getColor() {return color;}
 public void setColor(Color theColor) {
 propertyChangeListeners.firePropertyChange("Color", color, theColor);

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 6

 color = theColor;
 }

 public void
 addPropertyChangeListener(java.beans.PropertyChangeListener theListener) {
 propertyChangeListeners.addPropertyChangeListener(theListener);
 }

 public void
 removePropertyChangeListener(java.beans.PropertyChangeListener theListener) {
 propertyChangeListeners.removePropertyChangeListener(theListener);
 }
}

The events sent to each listener are objects of class PropertyChangeEvent, which looks something like this:

public class PropertyChangeEvent extends java.util.EventObject {

 private String propertyName;
 private Object newValue;
 private Object oldValue;
 private Object propagationId;

 public PropertyChangeEvent(Object source,
 String propertyName,

 Object oldValue,
 Object newValue) {…}

 public String getPropertyName() {
return propertyName;

 }

 public Object getNewValue() {
return newValue;

 }

 public Object getOldValue() {
return oldValue;

 }

 public Object getPropagationId() {
return propagationId;

 }

}

The propertyName is a String that indicates the printable name of the property. The name doesn’t have to
match the property’s name exactly. You could use an abbreviation or even a different word, as long as the
listeners understand it.

The propagationId is currently marked for future use by JDK1.1. Its purpose is to prevent circularities in
property change notifications. A circularity occurs when two objects are direct or indirect property-change
listeners of each other. Changing a property in A causes a notification to be sent to B, which in response
changes one of its own properties. This causes B to send a notification to A. The ensuing infinite notification
loop would immediately deadlock the system. The propagationId field allows you to tag a notification with
a number that the listener can look at. If the listener sends a property notification as a consequence of
receiving a property-change notification, it must use the first notification’s propagationId in the new
notification. This way the original property-change source can determine that the notification is in response to
its first notification and avoid an infinite loop. Keep in mind that this whole scenario of use of the
propagationId field is yet to be implemented.

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 7

The following example shows a class that listens for changes in the property named Color. The listener
doesn’t check the ID of the event source, because it only installed itself as a listener on one source.

class MyListener implements java.beans.PropertyChangeListener {

 java.awt.Color backgroundColor = null;

 public void
 propertyChange(java.beans.PropertyChangeEvent theEvent) {

 // see if the background color changed
 if (theEvent.getPropertyName() == "Color") {

 // get the new color
 Color oldColor = (Color) theEvent.getOldValue();
 Color newColor = (Color) theEvent.getNewValue();
 if (oldColor == newColor) return;

 backgroundColor = newColor;

 // the background changed, so repaint ourselves
 // ...
 }
 }

Bound and Constrained Properties

When a property is bound, any changes to it will trigger a notification event to registered listeners. There are
occasions when changes to a property need be validated by other objects before being accepted. Such bound
properties are said to be constrained, because one of the property-change listeners can veto the change. Say
you have a tab control object, showing the page numbers available in a document. By clicking the page
number you set a pageNumber property to a new page. Assume the document object with the actual pages is a
multi-user object. Users can add and delete pages at any time. Before you switch the tab control to a new page,
you must have the document validate that the page exists. If the page was deleted, the listener throws a
PropertyVetoException, and the tab control avoids going to a non-existent page, and possibly even
removes the tab for that page.

Here’s how it all works. First you must have an object that contains the constrained property. When I say
constrained, it is implied that the property is also bound. There is no such thing as a constrained unbound
property. The property will have the usual getter and setter methods, whose names follow the Java property
design patterns described for bound properties. Calling the setter function causes a PropertyChangeEvent
to be broadcast to all registered listeners. The order of delivery is not specified by the Beans spec, so be careful
your listeners are not relying on a certain order to work correctly. Because the setter method can cause a
PropertyVetoException, you can identify constrained properties by the signature of their setter method.
For a property name PageNumber, the setter would look like this:

public int getPageNumber();
public void setPageNumber(int thePageNumber) throws PropertyVetoException;

When a listener receives a PropertyChangeEvent, keep in mind that the reason the event was sent was not
to tell the listener that the property changed, but only to find out if all the listeners allow the property to be
changed. If listener A received the notification and changed it internal state to reflect the event, it is possible
for a subsequent object in the listener chain to veto the change. Listener A would now have an incorrect state.

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 8

Listeners for constrained properties must implement the VetoableChangeListener like this:

class MyVetoableListener implements java.beans.VetoableChangeListener {

 // this method is called to validate a property change
 public void vetoableChange(java.beans.PropertyChangeEvent theEvent)

throws java.beans.PropertyVetoException {}

 // ...
}

When the constrained property is changed, it is up to the setter function to fire the PropertyChangeEvent
to the listeners, by calling their vetoableChange method. As with bound properties, the best way to handle
listeners is to use a PropertyChangeSupport object, like this:

public class MyBean {

 private Color color;
 private java.beans.VetoableChangeSupport vetoableChangeListeners =
 new java.beans.VetoableChangeSupport(this);

 public Color getColor() {return color;}
 public void setColor(Color theColor)
 throws java.beans.PropertyVetoException {
 vetoableChangeListeners.fireVetoableChange("Color", color, theColor);

 // if we get here, it means no listener vetoed the change

 // change the property
 color = theColor;
 }

 public void
 addVetoableChangeListener(java.beans.VetoableChangeListener theListener) {
 vetoableChangeListeners.addVetoableChangeListener(theListener);
 }

 public void
 removeVetoableChangeListener(java.beans.VetoableChangeListener theListener) {
 vetoableChangeListeners.removeVetoableChangeListener(theListener);
 }
}

Methods

Methods contain a Bean’s code, and are equivalent to C++ member functions. The previous section showed
public methods for accessing property values, but methods can have other access control modifiers. The Java
language defines the following modifiers: public, protected, private and package. The first three are
equivalent to their C++ cousins. The last is similar to a C++ friend. Declaring a method of type package
makes it accessible to all the other classes defined in the same package. A method declared without an access
control modifier is by default a package method.

Java methods are allowed to be overloaded, as in C++, but don’t support optional arguments. Java Bean
methods are no different from ordinary Java methods, except that they relate to Java Bean objects. Except for
methods related to accessing properties, Bean methods are generally not accessible at design time in
Application Builders like JBuilder.

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 9

Events

When something happens to a Bean, it is called an event. Events can occur when a Bean gains or loses the
focus, when the mouse is clicked on it, when a key is typed, etc. Which events are significant to a Bean depend
entirely on what the Bean is designed to do. Some Beans will support GUI-type events, like mouse and
keyboard actions. Other Beans may not be visible at all, and respond to non-GUI-related events. For example,
a Database Bean might respond to a PostRecordUpdate event when the user changes a record.

The Event-Listener Model

In general, events propagate state-change notifications from one place to another. Some events are generated
by the system, others originate from Java objects or Beans. System events describe actions that originate
outside your program, such as mouse and keyboard activities. Events can also be generated by Java Beans in
your own program. The originator is called the source object, and the receiver is called the listener object. It
takes both objects for an event to be transmitted. In order for a listener to receive events from a source, it must
register itself as a listener with that source. Listeners must be derived from an EventListener interface.
Java comes with a number of built-in listeners for common things like mouse and keyboard events. The
following figure shows the class hierarchy of these built-in interfaces:

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 10

Figure 1 - The built-in Java event handler interfaces.

Objects that are sources of events are not required to be derived from any special class or interface. When an
event occurs, the source invokes a method on the listener. The event itself is encoded in an object, which must
inherit from java.util.EventObject. This arrangement entails that the source know something about the
listener, because it invokes one of the listener’s methods. A separate event class must be created for each type
of event you will deal with. As of this writing, Java comes a variety of built-in event classes, as shown in the
following class hierarchy.

java.util.EventObject

java.beans.PropertyChangeEvent
java.awt.AWTEvent

java.awt.event.ActionEvent
java.awt.event.AdjustmentEvent
java.awt.event.ComponentEvent

java.awt.event.ContainerEvent
java.awt.event.FocusEvent
java.awt.event.InputEvent

java.awt.event.KeyEvent
java.awt.event.MouseEvent

java.awt.event.PaintEvent
java.awt.event.WindowEvent

java.awt.event.ItemEvent
java.awt.event.TextEvent

java.util.EventListener

java.awt.ActionListener

java.awt.AdjustmentListener

java.awt.ComponentListener

java.awt.ContainerListener

java.awt.FocusListener

java.awt.ItemListener

java.awt.KeyListener

java.awt.MouseListener

java.awt.MouseMotionListener

java.awt.TextListener

java.awt.WindowListener

java.beans.PropertyChangeListener

java.beans.VetoableChangeListener

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 11

Figure 2 - The built-in Java event classes.

The BDK also contains some sample code showing the use of user-created events in the
beans\demo\sun\demo\quote directory.

Hooking up the source and listener

OK. You have 3 objects so far: an event source, an event listener and an event object. Now what? To connect
the source and listener together, you need to register the listener with the source. You do so using by calling an
addEvent method. The method name should follow the design pattern for events, i.e. should be the word
‘add’ followed by the event name. For an event class called MyEvent, the registering method should be named
addMyEvent. To unregister a listener, the removeEvent method should be called. Following the standard
design pattern, to unregister a MyEvent listener, you call the method removeMyEvent. As mentioned earlier,
to send an event, the source must know something about the listener. If an object is capable of sending
MyEvent objects, it not only knows about the MyEvent class, but also about the MyEvent listener class,
because the source invokes a specific method on the listener.

Say you created an LED Bean that needs to show the state of a button. When you press the button, the LED is
supposed to turn on. When you release the button, the LED turns off. You can get this functionality using two
events sent from the button to the LED. The first step is to create event classes that carry information about
what happened. So you create the class ButtonPressedEvent. By convention, event class names end with
“Event”. You wind up with a hierarchy like this:

Figure 3 - A simple event class.

You might implement the class something like this:

public class ButtonPressedEvent extends EventObject {
 public ButtonPressedEvent(java.awt.Component theSender) {
 super(theSender);
 }
}

This simple class doesn’t really do anything, expect create a new type that you can use to identify
ButtonPressed events to the listener. To make the LED turn off, you have two options: you can create a new
ButtonReleasedEvent, or you can change your original event class to carry information about the state of
the button. Let’s take the latter approach. The class will need a member to hold the button state. Because an
event transmits information about something that has already occurred, it is important to protect its fields from
alteration. Making them private or protected usually suffices. I’ll call the new class
ButtonClickedEvent, and implement like this:

public class ButtonClickedEvent extends EventObject {

 protected boolean pressed;
public boolean isPressed() {return pressed;}

 public ButtonClickedEvent(java.awt.Component theSender,
 boolean stateIsPressed) {
 super(theSender);

java.util.EventObject

ButtonPressedEvent

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 12

 pressed = stateIsPressed;
 }
}

Using this new class, if we receive a ButtonClickedEvent object, we can call its isPressed method to see
if the button was pressed or released. Now that we have an event to send, we need an LED Bean that knows
how to handle it. The class must understand ButtonClickedEvents, so first I’ll create a
ButtonClickedListener interface like this:

interface ButtonClickedListener extends java.util.EventListener {
 void buttonClicked(ButtonClickedEvent theEvent);
}

Any listener of ButtonClickedEvents will be required to implement the ButtonClickedListener
interface. For this quick example, the listener is the LED bean. I’ll implement the LED like this:

class LED extends java.awt.Component implements ButtonClickedListener {

 public void buttonClicked(ButtonClickedEvent theEvent) {
 if (theEvent.isPressed())
 // paint the LED on
 else
 // paint the LED off
 }
}

We’re still missing a button that knows how to fire ButtonClickEvents to registered LED object. I’ll create
it as a class called MyButton and implement it like this:

class MyButton extends java.awt.Component {

 public boolean mouseDown(java.awt.Event evt, int x, int y) {
 sendButtonClickEvent(new ButtonClickedEvent(this, true));

return true;
 }

 public boolean mouseUp(java.awt.Event evt, int x, int y) {
 sendButtonClickEvent(new ButtonClickedEvent(this, false));

return true;
 }

 public void sendButtonClickEvent(ButtonClickedEvent theEvent) {
 // notify all listeners
 Vector initialListeners;
 synchronized(this) {
 initialListeners = (Vector) buttonListeners.clone();
 }
 for (int i = 0; i < initialListeners.size(); i++) {
 ButtonClickedListener nextGuy =
 (ButtonClickedListener)(initialListeners.elementAt(i));
 nextGuy.buttonClicked(theEvent);
 }
 }

 protected Vector buttonListeners = new Vector();

 public synchronized void
 addButtonClickedListener(ButtonClickedListener theListener) {
 buttonListeners.addElement(theListener);
 }

 public synchronized void
 removeButtonClickedListener(ButtonClickedListener theListener) {
 buttonListeners.removeElement(theListener);

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 13

 }
}

The two add and remove methods near the end of the class manage the registering and unregistering of
listeners. An internal field of type Vector is used to manage the collection of listeners. Class MyButton is
implemented as a multi-cast object, because it supports multiple listeners. The class would be simpler if it only
allowed one listener, because a simple field of type ButtonClickListener would suffice. If
ButtonClickedEvent were a uni-cast event, attempts to register more than one listener would cause you to
throw a TooManyListeneresException in addButtonClickedListener if attempts are made to
register more than one listener.

Getting back to my example, the interesting stuff is in the method sendButtonClickEvent, which takes a
ButtonClickedEvent as a parameter. The event carries inside itself the new button state.
sendButtonClickEvent iterates over the registered listeners, calling their buttonClicked method. A
temporary internal vector is used during the iteration, because the initialListeners vector might be
changed during the iteration by listeners calling directly or indirectly addButtonClickListener or
removeButtonClickListener.

We’re on the homestretch. We have a method to register ButtonClickedEvents, so we need someone to
call it. The someone can be anyone. If you’re doing things the hard way (i.e. by hand) you might have the
listener register itself. If you’re doing things the easy way (i.e. using an Application Builder like JBuilder), the
listener might be registered by the parent frame window of the button and LED. For the purpose of this
discussion, it doesn’t matter who registers the ButtonClickedListener. The registration code needs to
look something like this:

MyButton myButton = new MyButton();
LED led = new LED();
myButton.addButtonClickedListener(led);

Event Adaptors

While connecting objects together as in the previous example is not too complicated, the technique has a
problem: MyButton and LED are not completely generic. LED works only with MyButton and vice-versa. It
would be much preferable to have a way to code the two classes so they didn’t have that inter-dependency. The
Java solution is through event adaptors, which are objects that connect an event source with an event listener.
Adaptors make it possible to remove class dependencies from sources and listeners, but at a cost. The
dependency isn’t really eliminated, just moved into the adaptor. At least the class dependency is in only one
place.

When you connect objects together through events using an Application Builder like JBuilder, an adaptor class
is generated automatically, and code is created to hook the adaptor to the source and listener. Using the
MyButton example from above, JBuilder would create an ActionEvent to represent the button click, and an
ActionAdaptor to hook the button up with the parent frame. Remember from Figure 2 that ActionEvent is
a built-in event. Assuming the parent frame window was called MyFrame, the ActionAdaptor code would
look like this:

class MyFrame_myButton_ActionAdapter implements ActionListener{
 MyFrame adaptee;
 MyFrame_myButton_ActionAdapter(MyFrame adaptee) {
 this.adaptee = adaptee;
 }
 public void actionPerformed(java.awt.event.ActionEvent e) {
 adaptee.myButton_actionPerformed(e);
 }
}

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 14

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 15

The controls and the adaptor are created in the parent frame window like this:

class MyFrame extends DecoratedFrame {
 MyButton myButton = new MyButton();
 LED led = new LED();

 public MyFrame() {
 // …
 myButton.addActionListener(new MyFrame _myButton_ActionAdapter(this));
 }
}

When you click the button, the adaptor calls the frame’s myButton_actionPerformed method, passing it
an ActionEvent object. You write code in this handler to set the LED on or off:

class MyFrame extends DecoratedFrame {
 // …
 void myButton_actionPerformed(java.awt.event.ActionEvent e) {
 // … turn the led on
 }
}

Adaptors can also serve other purposes. Rather than merely passing along an event from a source to a listener,
adaptors can multiplex or demultiplex events, serve as intelligent queues, manage event delivery based on
priority, and more.

Event Handlers in JBuilder

Event handlers are a powerful and simple way to customize a Bean. Application Builders like JBuilder display
the design-time event handlers to the developer as a tabbed page in the Property Inspector. To add an event
handler for an event, all you do is type the name of the handler in the Property Inspector. Better yet, just
double click the edit field next to the property. JBuilder automatically creates a handler by concatenating the
object name with the event name. For an object name button1, the actionPerformed handler would look
like this in the Inspector:

Figure 4 - The Events page for java.awt.Button in JBuilder.

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 16

The handler is created as a method of the parent object. Say you have a simple java.awt.Frame window
called MyFrame with a java.awt.Button called button1, as in Figure 5.

Figure 5 - A simple frame window.

Double clicking on the actionPerformed field in the Property Inspector causes JBuilder to create the
handler button1_actionPerformed as a method of MyFrame, like this:

class MyFrame extends DecoratedFrame {
 //…
 void button1_actionPerformed(java.awt.event.ActionEvent e) {
 // add your code here...
 }
}

The handler is passed an ActionEvent parameter, describing the button event that occurred. The class
java.awt.event.ActionEvent is used heavily in JBuilder applications, and is used anywhere a handler
can infer what happened without detailed event help. The class has two methods, getActionCode and
getModifiers. An ActionCode is just a string set by the event source. In the example above, button1 sets
the string to just… “button1”. ActionEvent modifiers encode the state of the modal keyboard keys, such as
the SHIFT, CONTROL and ALT keys. The button handler in my example doesn’t really need to know what
event occurred, because it is obvious: I created the handler to process button clicks, and the handler doesn’t
care what modal keys are pressed. The only way the handler can get called is through a click on button1, so
there is no doubt about what event occurred. ActionEvent is just a plain vanilla event. It basically tells the
listener: your event occurred. The listener should know just what event this is. You could use
ActionEvent’s ActionCode to carry additional information about the event, but JBuilder creates most of
the ActionEvents you’ll be using, so all you’ll normally get out of ActionCode is the printable name of the
event source.

The event handler in MyFrame isn’t called directly from button1: JBuilder always uses adaptors to call
handlers. When you create an event handler, JBuilder creates an adaptor through which a method in the parent
object is invoked by the event source. This follows the event-delegation model described earlier. Except for the
adaptor part (not exactly a trivial addition), the JBuilder event model is similar to the Delphi model.

Persistence

If you change the properties of a Bean using an Application Builder, you expect those changes to be saved
permanently somehow. The somehow part requires that Beans be persistent. In C++, persistence was supported
by a class library, which invariably was vendor-dependent and always quite complicated. In Java, persistence
was deemed to be such a valuable feature that the Java folks decided to support it at the language level, a
decision that not only makes persistence vendor-independent, but practically inconspicuous in many programs.
Beans get their persistence essentially for free from the Java language. Persistence is available to any object
created using JDK 1.1 – not just Beans. Even though persistence is not a Beans topic per se, it is so important
that I’ll discuss it briefly.

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 17

Meta Classes

Persistence is based on the ability to serialize things, i.e. to write objects out to a stream one byte at a time, and
be able to reconstruct objects by reading bytes from a stream. The concept is simple to understand, and not too
hard to implement. Writing Java objects to storage without requiring user code is accomplished with a little
help from objects that understand the layout of Java objects. Associated to each Java class and interface is a
special object of type java.lang.Class, which is essentially a meta-class, i.e. it contains a description of the
class. C++ programs require macros to represent class meta-data. Visual C++ programmers are familiar with
the macros DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC to support serialization. Each C++ vendor has a
proprietary set of macros to support serialization. Java has had meta-classes from day one, and the JDK 1.1
has added new features to support persistence. The implementation is so unobtrusive that novice Java
programmers don’t even know it’s there!

Any time you create a class, the Java system automatically creates a Class object to go with it. The Class
object is able to create a class from a class name (e.g. “java.MyBeans.MyFirstBean”), and can return a
list of each field and method used in the class. When you save a class to a stream, the Java system writes
information obtained from its Class object followed by the object itself. The serialized Class information
contains enough information for Java to later read the object back in and reconstruct it properly. Java serializes
Class objects differently from other classes, to avoid infinite recursion.

Serializable classes

Java objects are not persistent by default. If you want persistence, you must derive a class from either the
java.io.Serializable interface or the java.io.Externalizable interface. The former provides
transparent serialization support, the latter gives you, the class author, complete control over how your class is
serialized. A simple persistent bean can be declared like this:

public class MyClass implements java.io.Serializable {
 // …
}

By default, all fields of the class will be persistent. You can tell Java not to save a field by marking it with the
transient keyword. Any fields that are always initialized by the class itself should be marked transient,
such as:

public class MyPanel extends Panel implements Serializable {

 private transient boolean active;
 public MyPanel() {active = false;}
}

Once you have a serializable Bean, you can stream it to a file very easily, like this:

MyPanel myPanel = new MyPanel();
FileOutputStream myFile = new FileOutputStream(“MyPanelFile.ser”);
OutputObject output = new OutputObject(myFile);
output.writeObject(myPanel);
output.flush();

You can use whatever filename and extension you want, of course, but the Java convention uses the extension
.ser for serialized beans. If you handle the file using your own code, the extension doesn’t matter, but if you
plan to package the component in a Java Archive (JAR), then the .ser extension is important. The

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 18

OutputObject object controls the serialization process to a stream. You can just as easily stream your objects
to a serial port or to a modem, by changing the object passed to the ObjectOutput constructor.

The simple statement

output.writeObject(myPanel);

packs a lot of power. If myPanel contains references to other objects, those objects are also saved. If myPanel
is part of a network of objects, the entire network is saved. Java guarantees that it will save enough
information to restore every non-transient field in a class. If a field references another object, the other
object is tagged with an internal handle, then Java saves both the object and the handle. The process repeats
recursively until all reachable objects have been saved.

Implementing the Serializable interface is what is required for a Java class to be persistent. But
persistence is not the only consequence of being Serializable. What the interface really indicates is that a
class is capable of being broken down into a series of bytes, and can be reconstructed from a series of bytes.
Just where these bytes go or come from is not important to the class. This is good, because one very important
task that has nothing to do with persistence, but everything to do with serialization is passing Java objects over
the wire in a Remote Method Invocation (RMI), which is really just a remote procedure call. Using a language
like C++, there is no end to the complexity and details of parameter marshaling, IDL interfaces, compilers and
what have you. In Java, any object that is serializable interface is auto-magically sendable over the wire. No
funny stuff happening under the table. Since Java knows how to take the class apart into bytes and put it
together again using standard serialization, persistent objects are also remotable.

If you have special requirements for the way individual fields are serialized, you can tag them transient and
provide writeObject and readObject methods to write and read the object yourself. Say you have a
UserAccount class that has a password field. You wouldn’t want the password to be written in clear text to a
stream. When the times comes to serialize UserAccount, you want to encrypt the password field. You’ll need
to decrypt it on deserialization. The class might initially look something like this:

class UserAccount implements java.io.Serializable {
 transient private String password;
 private void writeObject(ObjectOutputStream theStream)
 throws java.io.IOException {}
 private void readObject(java.io.ObjectInputStream theStream)
 throws java.lang.ClassNotFoundException,
 java.io.IOException {}
}

UserAccount might read and write the encrypted password something like this:

class UserAccount implements Serializable {
 transient private String password;

 // stubs for encryption/decryption methods
 String Decrypt(String theString) {return theString;}
 String Encrypt(String theString) {return theString;}

 private void writeObject(ObjectOutputStream theStream)
 throws java.io.IOException {
 // write the non-transient fields
 theStream.defaultWriteObject();

 // write the encrypted password
 theStream.writeObject(Encrypt(password));
 }

 private void readObject(java.io.ObjectInputStream theStream)
 throws java.lang.ClassNotFoundException,

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 19

 java.io.IOException {
 // Read in the inherited stuff
 theStream.defaultReadObject();

 // read the encrypted password
 String encryptedPassword = null;
 encryptedPassword = (String) theStream.readObject();
 password = Decrypt(encryptedPassword);
 }
}

I left out the details of the encryption/decryption logic. The important thing is that Serializable objects
don’t have to do anything (other than implement the Serializable interface) to become persistent. If the
default persistence support doesn’t fit certain fields, you can provide your own read and write functions. You
can call defaultReadObject and defaultWriteObject to handle all the non-transient fields of your
class, and never have to worry about reading and writing the ancestors, because Java takes care of that
automatically.

Externalizable classes

When you need to take complete control over what and how Java serializes a class, you implement the
Externalizable interface. Why would you need to take full control over serialization? Say you wanted to
write your class capable of reading/writing a compressed version of itself. Maybe the class contains a lot of
data, and you want to send it over a modem connection. Using the standard Serializable interface doesn’t
quite give you enough control, so you make the class Externalizable.

By having your class implement the Externalizable interface, you tell Java that you intend to take charge
of serialization. You’ll need to add special read and write methods to your class, and the Java I/O classes will
call these methods when necessary. To start with, your class might look like this:

class MyCompressableBean extends java.awt.Component
 implements java.io.Externalizable {
 public void writeExternal(ObjectOutput theOutput) {}
 public void readExternal(ObjectInput theInput) {}
}

When the Java I/O system needs to serialize your bean, it will recognize that is isn’t a regular Serializable
bean. Discovering that the bean implements Externalizable, it then invokes your bean’s writeExternal
or readExternal methods. Implementing these methods will generally require more work than the
equivalent writeObject/readObject methods in the Serializable interface, because the Java system
doesn’t automatically read or write any ancestors of your class. It is up to you to decide whether you want the
base classes to be streamed, and how.

Keep in mind that the built-in AWT and JBuilder classes don’t implement Externalizable, so
MyCompressableBean can’t read or write the ancestor using code like this:

class MyCompressableBean extends java.awt.Component
 implements java.io.Externalizable {

 public void writeExternal(ObjectOutput theOutput) {

 super.writeExternal(theOutput); // this won’t work!

 // write fields of MyCompressableBean
 //...
 }

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 20

 public void readExternal(ObjectInput theInput) {

 super.readExternal(theInput); // this won’t work!

 // read fields of MyCompressableBean
 //...
 }
}

You can’t call the ancestor’s readObject/writeObject methods, because they take ObjectInputStream
and ObjectOutputStream as parameters, respectively, and you don’t have those kinds of streams in
readExternal/writeExternal. So how do your stream your class? The answer is usually “the hard way”.
Some classes may not need to stream fields for any of their ancestors. In this case the task is simpler, making
MyCompressableBean look perhaps something like this:

class MyCompressableBean extends java.awt.Component
 implements java.io.Externalizable {

 // assume all the class' data is in this array
 byte[] data = new byte[100];

 // assume these 2 methods handle the compression/decompression
 byte[] compressedArray(byte[] theArray) {
 // pretend we return a compressed array...
 return theArray;
 }

 byte[] decompressedArray(byte[] theArray) {
 // pretend we return a decompressed array...
 return theArray;
 }

 public void writeExternal(ObjectOutput theOutput)
 throws java.io.IOException {
 // write fields of MyCompressableBean
 theOutput.write(compressedArray(data));
 }

 public void readExternal(ObjectInput theInput)
 throws java.io.IOException {
 // read fields of MyCompressableBean
 byte[] compressedBytes = new byte[100];
 theInput.readFully(compressedBytes);
 data = decompressedArray(compressedBytes);
 }
}

In this example, I assume that all the fields for MyCompressableBean are stored in the byte array data.
Reading and writing of this array is performed using the write method of OutputObject and readFully
of InputObject.

If your class needs to read and write fields from its ancestors, then you have to write your own code to
determine the fields of each ancestor, and read and write them yourself. You would use the meta class
information supplied by java.lang.Class.getField to access fields in each of the ancestors. See the
section Class Meta-Data below for information on how to do this.

Versioning

Objects invariably evolve with time. You start out with one version, you debug it and ship it with your
application. The application is persistent, and saves its state when the user terminates it. When the application

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 21

is restarted, it uses the serialized data to resume where the user last left it. Your customer loves it. Until you
make some enhancements. You ship the enhancements and boom! When the user tries to start the app, the
system crashes. What happened? Simple, you have a versioning problem. When your new app tried to restore
itself using the old customer’s data, it used data that didn’t correlate with the new enhanced classes.

Versioning is the process of stamping serialized data with information that indicates the version of the saved
class. Versioning in Java is optional, but always a good idea to support. To version a class, you add a final
field named serialVersionUID to it, like this:

class MyClass implements java.io.Serializable {
 // …
 private static final long serialVersionUID = -3665804199014368530L;
}

The actual value of serialVersionUID is not important in itself. It is a hash code that represents the class.

In C++ programs, you handled object versioning manually. You tagged the stream with an arbitrary value.
Each time you made changes to classes that resulted in changes to the serialized data structure, you
incremented the version number. I don’t have to tell you how easy it is to forget to bump the number after
making a change in the heat of a project deadline. Java takes over the process, and computes the version
number not using an arbitrary number sequence, but by using a 64 bit hash code computed from the class meta
data itself.

When a class is serialized, the Java I/O layer writes the version to the stream. When the class is read back, the
serialVersionUID from the stream is checked with the value of the class being reconstructed. If the values
are different, the system recognizes a versioning problem and throws an InvalidClassException.

Restoring a Bean

Once a Java object has been saved in a stream, it can be read back. Reading objects is a bit more complicated
than writing, mainly because it involves identifying what type of object is stored in the stream and creating an
equivalent object in memory to initialize from the stream. The details are fortunately hidden from application
programs. To read a Java object, the following code will suffice:

FileInputStream myFile = new FileInputStream(“MyPanelFile.saved”);
InputObject input = new InputObject(myFile);
MyPanel myPanel = (MyPanel) input.readObject();

This example requires an explicit typecast, meaning you must already know the type of the object before you
read it in. Any objects that are streamed in with myPanel will be properly restored an initialized.

Application Builder Support

One of the most interesting features of Java Beans is the degree to which they support Application Builders.
The idea of RAD development is centered on the use of tools to make your work easier and faster. It then helps
if Beans have a way of helping the tool do its job. What kinds of information does an Application Builder
need? Basically, it needs a way to obtain from each Bean at design-time a description of the Properties,
Methods and Events that are available. Older component systems, like OLE, are not able to give this kind of
information, because COM interfaces possess no meta-data. To get any kind of information about an OLE
object, you must have access to its .tlb Type Library file. The creation of Type Libraries is awkward,
requiring the use of a stand-alone Type Library compiler. To read the file, you need a tool that understands the
binary structure of .tlb files. If you have the executable file (DLL) of an OLE component, but not its .tlb

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 22

file, you’re out of luck, because you can’t generate the .tlb using a DLL alone. This is not a small problem,
especially since most of the OLE components out there are distributed without Type Libraries. The decision to
include Application Builder support in each and every Bean means the OLE situation will never occur with
Beans.

Introspection

Application Builder support was designed to make it simple to, implement for most Beans, requiring
essentially no work on the Bean developer’s part. The folks at JavaSoft didn’t want Application Builder
support to create a big overhead requirement for every Bean. Keep in mind that one of the basic principles
behind the Bean philosophy is simplicity (which usually means small footprints). On the other hand, there are
certain Beans that have really complicated properties, requiring elaborate Property Sheets. These Beans must
have a way to show their own custom Property Sheets, bypassing the default property display mechanism.
To solve the problem, Beans use two techniques to support Application Builders: a low-level one, based on a
process called Reflection, and a high level one, based on explicit specification. The process of an Application
Builder obtaining meta-data from a Bean at design-time is called Introspection. Introspection is carried out
using either Reflection or explicit specification, through BeanInfo objects.

Reflection

When an Application Builder is handed an arbitrary Bean, it must be able to somehow inspect the Bean and
determine its Properties, Methods and Events. First the Builder checks to see if a BeanInfo object is available
for the Bean. If not, the tool then analyzes the names of the Bean’s methods and checks to see if any names
follow certain naming conventions or design patterns. This is the Reflection mechanism.

Design Patterns for Properties

Properties come in different types and each type has its own design pattern. Simple properties must have
accessor functions whose signatures match the design pattern:

public <PropertyType> get<PropertyName>();
public void set< PropertyName >(<PropertyType> theProperty);

For example, a property named MyColor would be identified by the accessor functions:

public Color getMyColor();
public void setMyColor(Color theColor);

Note that the <PropertyType> and <PropertyName> don’t have to be the same. The name of the property
is just a string displayed in the property sheet. The type is the Java class that represents the property internally.
If only a getter accessor is found, then a property is assumed to be read-only, and similarly for the setter
accessor.

Boolean properties occur so often that they were given the special design pattern.

public boolean is<PropertyName>();
public void set<PropertyName>(boolean theValue);

A boolean property called Active would have the accessors:

public boolean isActive();

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 23

public void setActive(boolean theValue);

If MyBean had the Active property, you would access it like this:

MyBean myBean = new MyBean();
if myBean.isActive()
 // do something…
myBean.setActive(true);

Indexed properties are another special case. To access an indexed property you need to specify an index, so the
following design pattern is used:

public <PropertyType> get<PropertyName>(int theIndex);
public void set<PropertyName>(int theIndex, <PropertyType> theProperty);

To access the Column information for a grid Bean, the accessors might be:

public GridColumn getColumn(int theColumn);
public void setColumn(int theColumn, GridColumn theColumnObject);

Design Patterns for Methods

There are no design patterns for methods. Any methods that don’t follow a known design pattern are
considered just…methods, meaning they are construed to not be Properties or Events. Methods are not usually
displayed in Property Sheets at design-time by Application Builders, because they are available to be called
only at run-time. An Application Builder might display a Bean’s methods in the context of a debug session,
perhaps in a Watch or Evaluate window.

Design Patterns for Events

Beans can generate two kinds of events: unicast and multicast. The unicast variety requires only one listener.
If an attempt is made to register other listeners, the Bean must throw a
java.util.TooManyListenersException. Events use the following design pattern:

public void add<EventListenerType>(<EventListenerType> theListener);
public void remove<EventListenerType>(<EventListenerType> theListener);

where the <EventListenerType> must implement the java.util.EventListener interface. By
default, events are assumed to be multicast, unless the add accessor is declared to throw a
java.util.TooManyListenersException. A couple of examples might be useful. Here is a unicast event
called Update:

public void addUpdate(Update theListener)
throws java.util.TooManyListenersException;

public void removeUpdate(Update theListener);

Here is a multicast event called Click:

public void addClick(Click theListener);
public void removeClick(Click theListener);

Explicit Specification

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 24

You can make your Application Builder bypass the Reflection process altogether, if necessary. Say you have a
bean that requires an entire program (such as a Wizard) to be customized. A simple property editor panel is
just not sufficient. You can hook your wizard into your Bean by creating a BeanInfo class. If you have a Bean
called MyBean, then you need to create a class called MyBeanBeanInfo that implements BeanInfo, like this:

public class MyBeanBeanInfo implements BeanInfo {…}

BeanInfo provides access to all kinds of information through its methods. By overriding these methods, you
can expose whatever information you want for your bean. The information includes the following:

• BeanDescriptor, which provides basic information about your Bean. A very important item
that a BeanDescriptor can return is a Customizer. The folks over at JavaSoft have put a
great deal of effort into ensuring that Java Beans could be arbitrarily customized, without
imposing unreasonable burdens on simple Beans. A Customizer allows you to specify a
complete GUI component, such as a java.awt.Panel, to customize a Bean.

• An array of PropertyDescriptor objects, giving a complete description of each property
available in your Bean and in all of its ancestor classes.

• An array of MethodDescriptor objects, giving a complete description of each method
available in your Bean and in all of its ancestor classes.

• An array of EventDescriptor, giving a complete description of each event available in your
Bean and in all of its ancestor classes.

Providing a BeanInfo object doesn’t in itself disable the Reflection mechanism. A well-behaved Application
Builder (one that follows the Beans spec) is expected to check for BeanInfo objects before launching into
Reflection. The Beans spec can’t prevent a tool from using Reflection in the presence of a BeanInfo object, or
force a tool to use Reflection. The Beans spec provides only the objects necessary to locate information – it
doesn’t force one behavior or another onto Application Builders. Obviously vendors are well-advised to follow
conventions, but the Beans spec is not designed to force them, or even check that they do.

Class meta-data

Among the new features added to Java since JDK 1.0.2 is a change in the special class java.lang.Class.
The new class has been extended with methods to return detailed information about a given class, so builder
tools can query java.lang.Class and use the information to populate forms showing the user a class’
constructors, methods and fields. The addition was made not only for the benefit of Application Builders, but
also as part of the Java language support for serialization. The following code excerpt shows some of the
interesting features of java.lang.Class:

public final class Class implements java.io.Serializable {

 public Field[] getFields() throws SecurityException {…}
 public Method[] getMethods() throws SecurityException {…}
 public Constructor[] getConstructors() throws SecurityException {…}

 public Field[] getDeclaredFields() throws SecurityException {…}
 public Method[] getDeclaredMethods() throws SecurityException {…}
 public Constructor[] getDeclaredConstructors() throws SecurityException {…}
}

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 25

The first 3 methods return information about public items of a given class (or interface) and all its ancestors.
For example getMethods() returns an array of java.lang.reflect.Method objects for each public
method declared in a class.

The second 3 methods return information about all items (public, protected, package and private) of a
given class or interface, ignoring any ancestors. For example getDeclaredFields() returns an array of
Field objects for every field in a given class, ignoring fields inherited from ancestors.

The meta-class information returned by java.lang.Class is encapsulated in the new classes
java.lang.reflect.Method, java.lang.reflect.Field and
java.lang.reflect.Constructor. These classes allow complete visibility of field types, method return
types, parameter types and so on. Application Builders can use java.lang.Class to get a complete
description of everything that makes up a class. For example, the following code displays in a list box the
fields of java.awt.Button:

ButtonControl myButton = new ButtonControl();
Class myButtonClass = myButton.getClass(); // get the object’s
 // java.lang.Class object
java.lang.reflect.Field[] myButtonFields = myButtonClass.getDeclaredFields();

for (int i = 0; i < myButtonFields.length; i++)
 listOfFields.add("Field [" +
 myButtonFields[i].getName() +
 "] type = [" +
 myButtonFields[i].getType() + "]");

The first 5 lines in the list box are:

Field [orientation] type = [int]
Field [imageFirst] type = [boolean]
Field [image] type = [class java.awt.Image]
Field [imageName] type = [class java.lang.String]
Field [label] type = [class java.lang.String]

The following code snippet fills a list box with a ButtonControl’s methods, their return types, and their
parameter lists:

ButtonControl myButton = new ButtonControl();
Class myButtonClass = myButton.getClass();
java.lang.reflect.Method[] myButtonMethods = myButtonClass.getDeclaredMethods();

for (int i = 0; i < myButtonMethods.length; i++) {
 list1.add("Method " +
 myButtonMethods[i].getName() +
 " return type = " +
 myButtonMethods[i].getReturnType());
 Class[] parameters = myButtonMethods[i].getParameterTypes();
 if (parameters.length == 0)
 list1.add("Parameter list: none");
 else {
 list1.add(" Parameter list = ");
 for (int j = 0; j < parameters.length; j++)
 list1.add(" " + parameters[j].getName());
 }
 list1.add(""); // add a blank line after each method
}

The following shows the first few lines of output from the program:

Method setOrientation return type = void

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 26

 Parameter list =
 int

Method getOrientation return type = int
 Parameter list: none

Method setImageFirst return type = void
 Parameter list =
 boolean

Meta data is a wonderful thing to have at run-time. C++ programmers were forced to use macros to get it. Not
only do macros differ across vendor implementations, but often make code very hard to read and even harder
to debug. I wish I had a penny for every programmer that accidentally single-stepped into a Visual C++
message map macro, only to waste hours looking up useless macro details in the documentation. Java gives
you standard meta-data right out of the box, making it much simpler to support commonly used features like
serialization. Keep in mind that meta-data support was added to the core JDK, so meta-data is available for
any Java object (not just Beans).

Property Editors

Many Beans have properties that require special handling, meaning they can’t be set by simply typing some
text or selecting a value from a list. For example a fancy grid Bean with a layoutOptions property might
want to display a picture of a grid. Clicking on specific areas of the grid might allow the user to turn on/off
layout features, such as the row lines, the column lines, the column headers, etc. You would probably
implement this editor as a java.awt.Panel, with embedded bitmaps and other controls. The Java Beans
spec allows you to hook your own Property Editors into the system by defining an editor class for your special
properties. An Application Builder locates the editor by using a simple design pattern: for a property
MyProperty, it looks for a class named MyPropertyEditor. Actually, things are slightly more complicated.
To keep application builders and vendors all on the same page, the JavaSoft folks created a standard class to
locate property editors: java.beans.PropertyEditorManager. The Beans spec allows you to register
editors for your own custom properties. The registry they are put into is not some hairy operating-system-level
monster like the Windows Registry. It’s simply a java.util.HashTable that stores key-value associations.
The key is the class you want to register an editor for. The value part is the editor class. The hash table is a
field of PropertyEditorManager. The Beans PropertyEditorManager tries to locate an editor for a
class in three steps:

1. It checks the PropertyEditorManager registry. You register editors by calling the method

registerEditor(Class targetType, Class editorClass)

of class java.beans.PropertyEditorManager. Calling the method a second time for a given editor
unregisters the editor.

2. It searches for a class whose name is the same as the class, and ends in “Editor”. For a class Color, it
searches for the class ColorEditor.

3. It searches for a class whose name is the same as the bean that owns the property, and ends in “Editor”.
For example, assume you have a bean MyBean with a property of type Longitude. The Beans
PropertyEditorManager will search for the class MyBeanEditor. The search path defaults to
sun.beans.editors, but you can change it by passing an array of strings to
java.beans.PropertyEditorManager.setEditorSearchPath.

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 27

The BDK comes with built-in editors for all the standard types. They form the following hierarchy:

PropertyEditor Panel

PropertyEditorSupport

BoolEditor
NumberEditor
StringEditor

ColorEditor
FontEditor

Figure 6 - The built-in property editors.

Editors come in 3 basic flavors: String, choice and custom. A String editor lets you type in a value for the
property, using an Edit control. The following figure shows a string editor for the title property of a Frame, as
shown in the JBuilder Property Inspector:

Figure 7 - A string editor in JBuilder.

A choice editor presents the user with a list of options to choose from. Boolean values are simple properties
edited using this type of editor, which looks like this in JBuilder:

Figure 8 - A choice editor in JBuilder.

A custom editor uses its own panel, so it doesn’t show up in the Property Inspector window. A custom editor
lets you display anything your bean needs. A custom editor is indicated in the JBuilder Property Inspector by
an ellipsis button, like this:

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 28

Figure 9 - The ellipsis button, indicating a custom property editor.

Clicking the ellipsis button opens the full property editor. The ColorEditor is an example of a custom
editor. Under JBuilder, the editor looks like this:

Figure 10 - The ColorEditor displayed under JBuilder.

Customizing a Java Bean

In C++, the only way to customize a class was to derive a new class from it. This is a fine model, but often
there are cases when you need to change a class in a minimal way. Creating an entirely new class is a lot of
work – in fact too much work for something as trivial as changing the text color of a button from black to red.
Java builds on the lessons learned with Visual Basic and Delphi to allow trivial changes to be accomplished
through persistent properties. To create a button with red text bean, you just take the standard one, change its
color and save it. Changing properties is certainly the easiest way to customize a Bean, and is often done
within the context of an Application Builder, with a property editor. Figure 11 shows the property inspector for
a JBuilder button.

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 29

Figure 11 - Changing a simple bean property using properties.

The next level in customization that doesn’t require deriving new classes is through event handlers. Beans use
the good old event-delegation model -- a fancy expression for a simple concept. In C++, if you have some
class to which you want to add an event-handler you are forced to derived a new class to handle the event. As
with properties, deriving classes is fine and well if you intend to add a significant amount of functionality, but
for simple changes it is just too much work. Say you want your red button to be used to insert the text in an
Edit control into a list box. The hard way is to derive a RedButton class from java.awt.Button and add a
mouseDown handler, something like this:

public class RedButton extends java.awt.Button {
 public boolean mouseDown(Event evt, int x, int y) {
 //…do something
 }
}

The easy way is to use delegation. Instead of deriving classes, you delegate event processing to another class.
Stated differently, why do the work in one class if there is another class that can do it for you?

Creating a new Java Bean

If you develop applications using Java Beans, probably the most central activity will be creating new Beans.
Often you will be able to get by using built-in beans and changing their properties. You can build all sorts of
dialog boxes using standard JBuilder beans. When you can’t get the needed features this way, it’s coding time.
You have two options for creating beans: starting from scratch and starting from an existing bean. Starting
from scratch is quite a bit more work, since you can’t leverage any other class’ code. It is by far more desirable
to start from existing bean, if at all possible. The whole idea of object-oriented programming is reuse. Reusing
code minimizes your effort and lets you start from a base or (supposedly) debugged code. Fortunately, JBuilder
comes to your aid when creating new beans. With its built-in wizards, it takes most of the cut-and-paste grunt-
work out of the process.

Creating a bean from scratch

There aren’t too many applications out there that can be built entirely using existing beans, or classes derived
from them. It doesn’t take a lot of imagination to think of a situation. Take the good old Employee class that

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 30

lurks the pages of practically every book on OOP. What bean would you create an Employee from? Probably
none, so you create Employee from scratch. Exactly what from scratch means will depend on what your
Employee does. If your want it to show up as a displayable object on forms, then you will probably derive it
from java.awt.Component. At the very least, you derive it from nothing, which by default makes
java.lang.Object the ancestor.

The easy way to create your new beans is via a wizard. JBuilder has one that looks like this:

Figure 12 - The JBuilder wizard for creating new beans.

By leaving the Extends field blank, the wizard creates a class with java.lang.Object as the ancestor,
producing something like this:

package Sample;

class MyClass1 {
 public MyClass1() {
 }
}

Ain’t much in there! You can expect to do a lot of work, if you plan to have the bean do much of anything.
Most of the time, you’ll be adding PME to your beans. That’s Properties, Methods and Events. In case you
dozed off after the paper’s first paragraph, properties are fields that can be accessed through getter and setter
functions, and can be shown on property sheets like JBuilder’s Property Inspector. Methods are where all the
code for your bean resides. Methods don’t have any standard features that lend themselves to automatic
generation, so you’ll spend a considerable amount of time coding them. Events are special methods that have
add and remove accessors. Events can be extracted from your bean with an Application Builder, and displayed
in a Property Sheet. JBuilder displays the events for a bean on the Events tab of the Property Inspector.

Starting from an existing bean

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 31

You don’t actually have to use a bean as the ancestor. Any Java object will do, although bean ancestors will
obviously have more code to reuse in terms of Application Builder and PME support. The biggest choice to
make is which class to derive from. Sometimes the choice is simple, but not always. Say you plan on creating a
new clickable image. Do you inherit from regular awt classes like java.awt.Button and
java.awt.Panel, or use beans like borland.baja.control.ButtonControl or
borland.baja.control.FancyPanel? It all depends on what your bean is going to do. Once you’ve
decided, the JBuilder Class Wizard helps you crank out the starting code for your bean. Say you decide to
inherit from borland.baja.control.FancyPanel. Here’s what your initial bean’s code would look like:

package MyControls;

import borland.baja.controls.*;

class MyClickableImage extends FancyPanel {
 public MyClickableImage() {
 }
}

Again, not too much to start with, but remember there’s all that code in the ancestor to reuse.

Unleash those wizards

Now you want to override some methods in the ancestor, such as mouseDown. JBuilder has all sorts of wizards
to help you develop Java code. There is one that shows you all the ancestors of your class, with the methods
available in each. All that information is made available thanks to the built-in Java meta data classes. Imagine
all the information you get without even a hint of a macro! The JBuilder Override Wizard looks like this:

Figure 13 - The JBuilder wizard for overriding methods.

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 32

You check the ancestors and find a mouseDown event handler in java.awt.Component. You select it and
presto! You get a new method for MyClickableImage that looks like this:

public boolean mouseDown(Event parm1, int parm2, int parm3) {
 //TODO: override this java.awt.Component method;
 return super.mouseDown(parm1, parm2, parm3);
}

Pretty standard stuff, if you’re used to working with common C++ IDEs like Visual C++ or Borland C++. You
implement the mouse handler, then you need a Paint method to dray your image. Back to the JBuilder
wizard. You locate a Paint method in borland.baja.control.FancyPanel. You select it and you get a
method looking like this:

public void paint(Graphics parm1) {
 //TODO: override this borland.baja.control.FancyPanel method;
 super.paint(parm1);
}

The wizard generates as much code as it possibly could, given the information provided. What if you can’t
find a method to override? No problem: you write a method that doesn’t override anything. Nothing magic
about it. JBuilder comes with a variety of different wizards, to give the most support it can for the various tasks
you’ll probably engage in. For example there is a multi-page Applet wizard that looks something like this:

Figure 14 - The first page of the JBuilder Applet wizard.

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 33

There is also a multi-page Application Wizard, for creating brand new applications. The first page looks like
this:

Figure 15 - The first page of the JBuilder Application Wizard.

There is yet another wizard to help you implement an interface in your class. It looks a lot like the Override
wizard:

Figure 16 - The JBuilder Interface Wizard.

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 34

The idea here is that you search for an interface by expanding the items in the Available Interfaces list. When
you select an interface, JBuilder adds some code to your Java object, which doesn’t necessarily have to be a
Java Bean. Here is how class MyClickableImage looks after implementing the java.awt.Shape interface:

class MyClickableImage extends FancyPanel implements Shape {
 public MyClickableImage() {
 }
 public Rectangle getBounds() {
 //TODO: implement this java.awt.Shape method;
 }
}

The wizard not only adds the selected interface to the list of ancestors, but also adds stubs for each method
inherited from the interface. Not rocket science, but definitely a useful feature that saves you from having to
manually lookup all the methods for each interface you implement.

The last wizard is the Project Wizard, a multi-page beast whose first page looks like this:

Figure 17 - The first page of JBuilder’s Project Wizard.

The project wizard works similarly to the AppWizard of Visual C++ or the AppExpert of Borland C++.
Again, nothing absolutely new here. JBuilder hasn’t invented everything from scratch. It builds on the lessons
learned with from Borland C++ and Delphi.

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 35

Comparing Java Beans with ActiveX

If Java Beans is the specification for a new component architecture, it makes sense to see how it compares with
other existing component models. Because ActiveX is the one most widely used in the Windows world, I’ll
discuss briefly how Java Beans and ActiveX compare.

For starters, ActiveX is too complicated! A two-year-old could tell you that much. ActiveX controls are built
on top of the Microsoft Component Object Model (COM). If ActiveX is based on a first generation component
model, Beans is definitely 2nd generation. COM objects were designed from the start to be hand-programmed.
COM objects don’t possess any meta-data, and contain little or no information that might help an Application
Builder. COM objects don’t have functions that return a list of the interfaces it supports. No functions
returning a list of the functions supported by a given interface. No one to call to get parameter list descriptions
or other valuable information. The OLE approach is to use separate binary files, like Type Library (.tlb)
files. Because the .tlb file must be generated using a special stand-alone compiler, there is the risk you (the
component develop) forget or even decide not to create a .tlb file for distribution. See how many Type
Library files you can find for the Microsoft products that are OLE servers (like Word, Excel et similia)...
Moreover, even if you had a Type Library, good luck in writing a quick function to decode its contents.

Okay, so ActiveX is complicated. Do users other than developers care what goes inside a component ? You
bet, because where complicated objects go, big ones follow. These days of Web-mania and anemic modem
bandwidths, web surfers are very conscious about page download times. If you stick a hairy old ActiveX
control on a page, chances are the download time will shoot from seconds to minutes. The truth is that
ActiveX controls are big. Just go check the size of your favorite 10 ActiveX controls, and tell me how many
are smaller than 100K. You’ll probably find a few in the megabyte range. Moreover, the size of an ActiveX
DLL may only be part of the control’s actual footprint. The control probably uses a slew of other DLLs. It is
quite common for ActiveX controls to pull in support DLLs extending the memory footprint into the
megabytes. In boxing terms, ActiveX is definitely a heavyweight, but big isn’t better in the software business.

In contrast, Java objects in general, and Beans in particular, were designed with small footprint in mind from
the very beginning. Beans are frequently in the 5-10 KB size. How is this possible? Simple, Beans get a big
boost from the Java runtime environment, which eliminates the need to add trivial stuff like file I/O or system-
level routines to each and every Bean. Drawing support, network support, file support… it’s all provided at
runtime by the Java environment, or by a small number of tiny Java objects. You don’t have to statically or
dynamically link a zillion libraries with your application. As a simple example, take a look at the sample
program java\demos\MoleculeViewer\XYZApp.class in the JDK directory. It is a viewing program
that displays one of three organic molecules in 3D. Using the mouse, you can rotate the molecules in 3
dimensions. The whole program is about…12KB. You can’t much more light-weighted than that! Reminds
me of the days of Forth, that good ol’ language that compiled down into almost nothing. How big would the
XYZApp program be if done with ActiveX controls? I rest my case.

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 36

You want more? Let’s talk security. You download a Web page with embedded ActiveX controls. Your
browser pops open a dialog box that looks something like this:

Figure 18 - The Code-Signed Certificate used by downloaded ActiveX controls.

The system is asking you whether you trust an ActiveX control embedded on the Web page. What do you do?
How do you know you can trust it? Assuming you would entrust your life to the company that created a given
control, what if the control were buggy? Maybe it has a bug that crashes your system on every 57th keystroke.
Maybe it contains a virus that waits for you to run your home-banking program. When you do, it silently
withdraws some money from your account and sends it to a European bank. Don’t laugh: a German hacker
group publicly demonstrated such a virus-infected ActiveX control recently

The big problem with ActiveX security is that it is based on the notion of trust and trustworthiness, stuff hard
to come by in these days of viruses. Even worse, Microsoft puts the burden of decision of trust on the end user.
It would be bad enough if all end users were software techies, but most users don’t have a clue about
technology. It is scary enough for them to have to boot their computer. I’ll bet my grandmother wouldn’t tell
the above dialog box from a New York Stock Exchange certificate.

The fact is that no one can tell you for sure whether an ActiveX control will cause trouble in your system or
not, and I don’t care who the publisher is. Java, on the other hand, was designed to deal with security from the
very beginning. The entire language is built on top of the so-called sand-box security model. When you run
Java code that was downloaded, a virtual sand-box is placed around the program. Every instruction of that
program that deals with sensitive areas, such as files or system calls, is runtime checked by the Java Security
Manager. This guy makes a drill sergeant look tame. Nothing, and I mean nothing gets done unless the
Security Manager approves it. You, the end user, have nothing to do with any of these decisions. If your Java
applet originated from outside your system, it is sand-boxed, otherwise it can do anything it wants. I’ll let you
decide whether you prefer the ActiveX or Java security model…

Next feature: platform independence. This one’s a no-brainer. ActiveX was designed for the Windows
platform. Period. There are packages that let you run ActiveX code on Macs, but you take a runtime hit, and

Understanding and Building Java Beans Components Ted Faison

8th Annual Borland Developers Conference - 1997 Page 37

runtime performance is really the only areas in which ActiveX outshines Java. At least on the Windows
platform, ActiveX controls are fast. Just as fast as any other code running on the machine. Java code is
normally not as fast, unless you have a Just-In-Time (JIT) compiler. Using JIT, the system compiles a Java
object’s bytecode into native machine language when it is loaded. There is a small up-front penalty for the
compilation, but after that your object runs at native speed. To be perfectly honest, Java programs generally
run quite a bit slower than native-compiled programs. Even with JIT compilers, the overall speed of a Java
program is lower than an equivalent ActiveX control. On the other hand, Java is truly platform-independent.
Java code runs anywhere there is a Java Virtual Machine (JVM) and you’ll have to look pretty hard to find a
major platform for which a JVM isn’t available.

Conclusion

To wrap this whole discussion up, Java Beans are here and here to stay. Beans are not out to eliminate the
competition (read ActiveX, CORBA and company), but to give developers the means to use an advanced
component model where runtime performance is not at a premium. You can fallback on native models like
ActiveX where speed is essential. Java Beans represent a generation leap in software development, primarily
because the spec was written specifically in favor of Application Builders. Beans allow you to develop high
quality software quickly, because they bend over backwards to help your favorite Builder make your software
development job easier. The Java language was designed from the start to be simple and lightweight, and the
Java Beans spec follows that same tradition of elegance.

