
Interactive Component-Based Software Development with Espresso*

Ted Faison
tedfaison@msn.com

Faison Computing Inc.
Irvine, CA 92606-8896

Abstract

Most component models in use today are language-
independent, but also platform-dependent and not
designed specifically to support a tool-based visual
development paradigm. Espresso is a new component
model that was designed with the goal of supporting
software development through tool-based visual
component composition. Being implemented in Java,
Espresso components can run on any Java-enabled
platform.

1 Introduction

Component-based software today is largely based on
language-independent models that require code-intensive
work to produce programs. Espresso is a new component
model based on the Java Beans specification, designed
specifically to support a tool-based approach to software
development, where the building blocks are binary (Java
bytecode) components. Java was chosen because it
supports at the language level several important features,
such as serialization and meta-data. Espresso components
support a visual composition development model:
components are connected together in a graph using
mouse gestures, without code generation. Espresso
components can also be nested, allowing a graph of
components to be enclosed in another Espresso
component. By supporting nesting to arbitrary levels, low
level components can be combined into larger and larger
components until an entire application component is
developed.
Software development using Espresso emphasizes rapid
visual programming using pre-built components obtained
from a user repository. While the Espresso model allows
developers to write their own code using traditional edit-
compile-link techniques, rapid development is predicated
on the availability of a library of pre-built components,

∗ This research is supported by the US Air Force, Rome
Laboratory, under Contract Number F30602-96-C-0205.

much like the TTL libraries used by hardware designers.
Espresso component graphs are built interactively using
live binary components, supporting an incremental
development model where everything is live during the
design phase.
The Espresso model is not a design notation, nor a
software development assistant, rather an implementation
specification. Espresso components are implementations
of a particular design and Espresso-based environments
are tools designed to build components and applications
as graphs of components. The emphasis is shifted from
code production to component composition.
The Espresso model wasn’t developed for a specific
domain. Espresso is not the component equivalent of a
domain-specific framework, but a generic model.
Domain-specific issues can be handled using specialized
Espresso component libraries.

2 Interactive Components

Espresso components may either be visible or not at run-
time. Visible objects include user interface controls,
which receive input from the user, and graphical objects,
which display other pictorial information without user
interaction. Non-graphical components are useful for
incorporating business logic into an application, and
include objects like component collections (e.g. vectors),
event timers, application-specific algorithms and adapters.
An Espresso Application Builder tool can create both a
GUI application, such as the client-side front end of a
multi-tiered database information system, or a non-GUI
one, such as a matrix inversion algorithm.
Two types of developers are envisioned to be typical
Espresso users: component producers and consumers.
Producers develop components for distribution or resale.
Consumers are typically application developers who use
interconnect pre-packaged or user-developed components
to implement more powerful components or complete
applications.
Component interconnection requires no source code
production, editing, compiling or linking. Connections are
made through persistent references. The time required to

generate a connection between components is not project-
size-dependent.
Being Java incarnations, Espresso components can be
designed as stand-alone applications or embedded in Web
pages. Espresso components can also be packaged in
special envelopes, for delivery over the Web using
standard browsers. Envelopes can be used for commercial
delivery of components, and support security through
code signing and optional encryption. Developers can also
package their own algorithms and source code into special
Espresso components, called User components. These
components contain compiled Java code, and are the
escape mechanism that frees developers from total
dependency on pre-built components. From the point of
view of an Application Builder, a User component looks
and acts like any other Espresso component.
Espresso components are denoted by boxes. Connection
points with the outside world are called ports. The notion
of port as a component connection point is not new [1],
but Espresso ports possess qualities that differentiate them
from older types of ports. Espresso ports are intelligent, in
the sense they contain methods a tool can call to get a
description of every port feature at runtime. They also act
as contract advertisements, describing the behavior not of
an entire component, but of collections of logically
related methods. Ports are different from traditional
interfaces [2][3] in that they can contain not only inputs,
but also outputs, which can be hooked up to inputs of
other components. An arrow denotes whether a port is an
input, an output or is bidirectional. Espresso ports are
described using formal specifications, allowing a tool to
verify the validity of an interconnection. The specification
describes the sequence of control flow in the port, pre and
post conditions, timing constraints and the parameter
types related to each input and output.
Components can also contain sub-components. Figure 1
depicts a component with 3 sub-components.

Figure 1 - A simple Espresso component.

Two ports are said to be compatible if all of the inputs of
one are compatible with the outputs of the other.
Compatibility is determined by an analysis of the formal

port specifications. Connecting compatible ports together
connects all the inputs of one with the corresponding
outputs of the other.
Labels, notes, comments, annotations and pictures may be
embedded arbitrarily in an Espresso component. All the
information required to display the component in Figure 1
is extracted from the component itself, with no
intervening help from external descriptor files. All
Espresso components possess one fundamental port: the
Descriptor Port, which provides Application Builder
tools with connectivity data, versioning info and meta-
data regarding internal structure. Espresso components
can optionally be distributed with an embedded Debug
component, which holds the full source code, symbol
tables and other information required to debug
components at the source code level.
The Espresso model doesn’t prescribe a particular
structure for Application Builders. It only guarantees that
information required to reconstruct the visual
representation of a component will be available from the
component at run-time in a standard format.
Experience results are not available yet for complete
Espresso-based systems. We are currently in the process
of creating a small library of components, to test crucial
aspects of compositional component-based development.
Important issues still being studied are port-
interconnection runtime overhead, formal port
specifications, tool-based automatic validation of
component interconnections and component-based debug
support.

3 Conclusion

Espresso components are not a solution for all
programming situations. Being built in Java, Espresso
components can only go where Java goes. Because
Espresso components are (currently) run in the interpreted
environment of the Java Virtual Machine, they are not
suited for real-time applications.
Space doesn’t allow us here to describe in more detail
many features of Espresso, such as Application Builder
support, the Espresso repository and component
distribution over the Web. An on-line paper [4] is
available that gives an overview of the current state of
Espresso.

[1] Nierstrasz, O. et al. Component-Oriented Software Development,
Communications of the ACM, Sept 1992, 160-165.
[2] Meyer, B. Object-Oriented Software Construction, Prentice Hall,
1988, 183-215.
[3] Rogerson, D. Inside COM, Microsoft Press, 1997, 15-34.
[4] Interactive Component-Based Software Development with
Espresso, on-line document,
http://www.FaisonComputing.com/Espresso.html.

RTFTextFontController

Upper/lower Case Control

Unicode
Output

ANSI
Output

RTF
Input

A B

C

