Putting OWL 2.0 Through its Paces

Ted Faison

Ted is a writer and developer, specializing in Windows and C++. He has authored several books
and articles on C++, and has been programming with the language since 1988. He is president
of Faison Computing Inc, a firm which develops C++ class libraries for DOS and Windows. He
can be reached at tedfaison@msn.com.

Introduction

When OWL 1.0 was released back in November 1991, it represented a quantum jump for C++ developers
of Windows applications. The learning curve was very steep, but the benefits substantial. OWL 1.0
enabled project development times to be reduced from months to weeks, spawning a whole new generation
of applications, well recognized by their use of the so-called Borland style controls, with the chiseled-steel
dialog boxes. Version 2.0 of OWL, although not revolutionary, adds many features that further simplify
application development. Support has been added for custom controls, dialog boxes as main windows, tool
bars, full-fledged status lines ala Word for Windows, GDI support (with classes for pens, brushes,
regions, fonts, palettes, cursors, bitmaps, icons and DIBs), printer support, and more. In this article, I'll
explore the most interesting new features of OWL 2.0. Before diving into the new features of OWL 2.0,

I'll spend afew words on OWL 1.0, to see why Borland chose to change course with 2.0, resulting in a
product that isincompatible with OWL 1.0. For the record, this article is based on a prerel ease (gamma)
version of OWL 2.0, so the shipping version of OWL may be alittle different from what | worked with.

The limitations of OWL 1.0

OWL 1.0 was developed in atime when C++ libraries were few and their development heavily influenced
by the work of the Smalltalk community. Indeed, OWL 1.0 was built around a class hierarchy that was
very Smalltalk in style: at the root of the hierarchy was a class named Object, and almost no use was made
of C++ features like virtual base classes or multiple inheritance. What OWL 1.0 unfortunately didn't
borrow from Smalltalk was the Model View Controller (MV C) paradigm, which defines a separation
between the processes of managing a window's basic data, representing the data on the screen, and
interacting with the end user of a program. OWL 1.0 tended to make al the code for handling and
displaying awindow wind up in asingle class -- typically derived from a class called TW ndow --

resulting in a very tight coupling between the model data and the way the data was displayed.

Persistence appeared to be added as an afterthought to OWL. In fact, persistence isreally the only part of
OWL 1.0 that seems to be implemented in C++ style. The only time multiple inheritance is used in OWL
1.0isin support for persistence, with the multiply inherited base class TSt r eamabl e. The pst r eam
hierarchy, to handle persistent streams also uses multiple inheritance, and has ani ost r eamflavor to it.
The pst r eamhierarchy has several classes that correspond directly to i ost r eamclasses. For example,
the classesf pstream i f pst r eamand of pst r eamare equivalent to thei ost r eamclassesf st r eam

i f st reamand of st r eam Manipulators are used in the pst r eamhierarchy to insert and extract objects
from pst r eans, using the same notation as with ordinary i ost r eans.

The main problem with OWL 1.0 was that it wasn't created by Borland but by another company, namely
The WhiteWater Group, which had originally developed the Actor programming language for Windows
[see MSIVol 4 No 2, March 1989]. Actor was something of a cross between Smalltalk and C++,
developed specifically for Windows. WhiteWater accumulated substantial experience with Windows class
hierarchies, and developed OWL in C++, which they then licensed Borland. OWL 1.0 did give Borland a

MSJ- Ted Faison Nov 27, 1993 OWL 2.0 Tour page 1

jump start into the C++ Windows application frameworks market, but it didn't give them everything they
wanted. What they didn't get was alibrary that was really C++ in style and rich in functionality. Most
complex C++ class hierarchies have more than one root class, whereas OWL 1.0 had the single root

Obj ect , taken directly from Smalltalk. No virtual base classes were used, so you couldn't easily create a
class that was multiply derived from OWL 1.0 classes. Even if you succeeded, the resulting class could not
be made persistent. Also, the OWL 1.0 containers (like TNSCol | ect i on and TNSSor t edCol | ecti on)
were not very powerful, not based on template classes, and incompatible with both the Obj ect -based
containers and the BIDS container classes. Hereis alist of the major areas in which OWL 1.0 was
deficient:

GDI support

Support for toolbars, tool palettes and status bars
Use of Containers

Model / View structure

Printer support

DDE/ OLE support

Clipboard support

Data Validation support

Even with its limitations, OWL 1.0 was still a remarkably useful product, because it was an open one.
Almost all the member functionsin the library were declared either pr ot ect ed or publ i c, alowing
derived classes to change even the most basic features. For example, using adialog box inside MDI child
windows hadn't been contemplated in the original design, but was relatively easy to implement by adding
alittle code in a derived class to change the way accelerator keys were handled. Anything not supported
by OWL directly could easily be added by programmers, either through custom classes or direct Windows
API cdls.

From 1.0to 2.0

One of the biggest problems Borland faced in the marketplace with OWL 1.0 was over theuse of a C++
language extension made to support the binding of C++ member functions to Windows messages. The
extension involved the declaration of functions known as Dynamically Dispatched Virtual Table (DDVT)
functions. Although elegant, the extension was completely non-standard. In 1991 the non-standard feature
didn't raise that many eyebrows, but in today's market with increasing competition between Microsoft,
Borland and Symantec in the C++ arena, things are different. One of Borland's goals with OWL 2.0 was
to create a standard product that can be used with any ANSI-compliant C++ compiler. Borland would love
to have Visual C++, Watcom and Metaware C++ programmers all use OWL 2.0. To this end, the Borland
devel opers made some rather dramatic changes to the product.

One of the first things Borland got rid of were the DDVT functions, which were replaced with MFC-style
messages maps called response tables. Thisimmediately caused any code written for OWL 1.0 to be
incompatible with OWL 2.0. Borland aso revamped OWL to take advantages of the new features that
were incorporated into the ANSI draft of C++ since development of OWL 1.0 started. Among the new
features, support of the new standard string class, the use of templates for containers, and exception
handling. Borland decided that rather than perpetuating a design that had basic problems, in the name of
compatibility - they would bite the bullet and make OWL as good as they possibly could, in terms of the
structure of the class hierarchy. The designers probably could have gone a little further to support features
like memory leak detection and support for OLE 2.0 and ODBC, which are supported in MFC 2.5. My
guess is that Borland was forced to leave them out to get the product to market in atimely manner.
Asaresult of al Borland's changes and improvements, OWL 2.0 is compatible with Windows 3.1,
Win32s and Win32. OWL is therefore a good tool for implementing 16 or 32 bit applications, and the new
OWL isamuch better product and much richer than OWL 1.0 -- with full compliance with the ANSI
draft. OWL has dozens of new classes, and has a rather extensive class hierarchy, as shown in figure 1.

MSJ- Ted Faison Nov 27, 1993 OWL 2.0 Tour page 2

See the figure on Pages 1-2 of the Borland Beta Documentation OWL 2.0 Reference Guide.
Figure not available
Figure 1 - The complete OWL 2.0 class hierarchy.

Asyou can seeinfigure 1, OWL is actually made up by several smaller class hierarchies. Thereisthe
document/view hierarchy, the child control hierarchy, the data validator hierarchy, the device context
hierarchy, the GDI class hierarchy, the gadget hierarchy and so on. Each of these is described in the
following sections. OWL use multiple inheritance to create a number of classes, such as TW ndow,
TDocManager and TVi ew (all derived from TSt r eamabl e and TEvent Handl er), TW ndowVi ew
(derived from TW ndow and TVi ew), TDecor at edFr ane (derived from TFr ameW ndow and

TLayout W ndowj), etc. OWL uses virtua base classes so allow you to create new classes that are multiply
derived from OWL classes, without incurring problems with multiple copies of the same base class.

Basic OWL Features

Let's get to the details. For starters, OWL 2.0 - like MFC 2.5 - follows the MV C paradigm. Borland uses a
refinement of the original MV C paradigm, and calls it the Doc/View Model. Borland loosely uses the
term document (as does Microsoft in expressions like Multiple Document Interface) to refer to generic
classes that handle data. The term document is used regardless of whether the data in question is aword-
processing document, a multi-media object, a bitmap or other.

There are several advantages in separating classes that manage data from the classes that display it. The
first benefit is greater simplicity. One class has access functions to read and write values, another class
presents data on the screen, formatted appropriately. The screen can be designed independently of the way
datais stored or managed by the underlying data model. Changes in the screen layout have no effect on
the model, and vice versa.

Another advantage is that the same data can be displayed differently by different viewers, or the same
viewer can be used in multiple windows, to show different parts of the data. For example, the Windows
File Manager isan MV C application, in that it displays files using two windows: one shows only
directories, the other only files. Multiple windows can be opened, each showing the filesin a different
directory, and the user of the program can modify the way the files are shown in the screen. Thereisonly
asingle instance of the data (the files on a disk), but multiple, independent views.

Figure 2 shows a portion of the OWL 2.0 class hierarchy, related to viewer classes and document classes:

TEventHandler TStreamable
TWindow TView TDocManager TDocument
TWindowView TEditView TListView TFileDocument

Figure 2 - The OWL 2.0 class hierarchy supporting the Doc/View model.

MSJ- Ted Faison Nov 27, 1993 OWL 2.0 Tour page 3

I'll describe the main parts of the Doc/View model shortly. Class TW ndow is the base class for all other
windows, including frame windows, dialog boxes and controls. OWL has a number of specialized classes
to handle MDI and SDI applications, also alowing you to easily use adialog box as a main window.
Custom controls are supported through class TCont r ol , derived from TW ndow. OWL also supports
common application features as status bars, message bars, tool bars and floating tool palettes. The
Microsoft Common Dialog Boxes are also supported by specialized OWL classes, reducing the amount of
code required by applications.

Documents

In OWL's Doc/View model, documents are classes that handle your application's underlying data.
Documents handle all kinds of data -- not just character documents. Documents can be compound, by
including other documents as sub-documents, allowing documents to be arbitrarily complex.

TDocument isthe base class for all document objects. Documents are designed to be persistent, although
the details of inserting and extracting a document's data to a stream are entirely application-dependent.
Class TDocunent has a number of virtual functions that support persistent stream operations. Derived
document objects are required to override these functions to read and write whatever data they require.

When you develop an OWL application, your aren't required to use documents or views. Simple
applications can be developed using the traditional approach: everything is asingle class or class
hierarchy. The Doc/View model is useful to handle more complex situations -- especially MDI
applications. AppExpert (see the sidebar for an overview of AppExpert) allows you to generate
applications using both a Doc/View approach, or the simpler SDI/MDI one.

Views

Documents have no way of interacting with the user of an OWL program. A document without a viewer is
about as useful as a boat anchor in the Sahara desert. View objects (also called viewers) allow a
document's data to be presented to the user. Viewers know how to take document data and format it for
presentation. One viewer can be connected to only one document, but there can be unlimited combinations
of documents and viewers. Viewers display data by connecting two other objects together: a document and
awindow. The document knows nothing about the window and vice versa. Only the viewer knows what's
really going on.

OWL has three built-in viewers, to handle the most common situations. The viewers are implemented in
the classes TEdi t Vi ew, TLi st Vi ewand TW ndowVi ew. TEdi t Vi ew presents a document's datain a
simple editor window that uses a maximized Windows Edit control. TEditView only handles unformatted
text files. TLi st Vi ewislike TEdi t Vi ew, except it uses a maximized Windows Listbox to display text
information. TW ndowVi ew isthe plain vanilla viewer, designed to be used as a base class for application-
dependent viewers, such as TIFF file viewers, hex file viewers, etc.

Document Templates

Documents and viewers don't live in isolation. With OWL 2.0, documents are associated with one or more
viewers. The association is made through a template class, using the macro
DEFINE_DOC_TEMPLATE_CLASS. When | first saw this macro, my reaction was, "not another macro!
Macros are for C programs...". Although not in my style, the macro does simplify the connection between

MSJ- Ted Faison Nov 27, 1993 OWL 2.0 Tour page 4

adocument and aview. In fact the macro handles all the details. To setup a Doc/View template, you do
something like this:

DEFI NE_DOC_TEMPLATE_CLASS(TSoneDocunent, TSoneVi ew, TMyTenpl at e) ;

This creates a new type called TMy Tenpl at e. The macro DEFINE_DOC_TEMPLATE_CLASS is rather
elaborate, expanding into the following code:

#defi ne DEFI NE_DOC_TEMPLATE_CLASS(docd ass, viewd ass, tpld ass)
t ypedef TDocTenpl at eT<docC ass, vi ewC ass> tpl d ass;
| MPLEMENT_STREAMABLE _FROM BASE(t pl Cl ass, TDocTenpl ate);
docC ass* tpl dass::|sMKi ndOf Doc(TDocunent & doc)

{

b . .

vi ewCl ass* tpldass::|sMWKi ndOf Vi ew(TVi ew& vi ew)
{

}

return TYPESAFE_DOWCAST(&doc, docd ass);

— - - - — —

return TYPESAFE_DOANCAST(&vi ew, vi ewd ass);

The macro first declares atemplate class, typdefing it ast pl C ass, then it calls a macro to setup support
for persistence, then it defines a couple of member functions. | would have preferred a simpler syntax to
create a document template. For example, in MFC al you have to do is instantiate a template class,
passing to it afew pointers, with an expression like:

CDocTenpl at e* nyTenpl ate = new CMul ti DocTenpl at e(| DR_MYTYPE,
RUNTI ME_CLASS(CWDocunent),
RUNTI ME_CLASS(CMDI Chi | dwWad) ,
RUNTI ME_CLASS(CW Vi ew));

The MFC code is more object-oriented, but unfortunately also commits sins of its own, making use of
macros again. The OWL code is complicated because it uses a template class to handle Doc/View
association. While I'm certainly an advocate of C++ template classes, I'm not sure exactly what benefits
there are in using a template class to hold Doc/View associations. MFC uses generic pointers to Document
and View objects in the Template class, using polymorphism to call the correct functions at runtime, and
this appears to be simple, object-oriented and typesafe.

Document templates facilitate the use of views and documents by handling a number of standard
functions. For example when you use commands like File Open or File Save As on the main menu
(assuming your application has these commands), the document templ ate takes over. It presents you with
standard dialog boxes, showing the files with a given suffix in a given default directory.

To use a document template, you create a global object like this:

TMyTenpl at e tenpl at eObj ect (" Vi ew Hex Data",
"* bat","C\\", 0, dtAutoDelete);

The first parameter is a string displayed in a small popup window if you select the File New command
and your document has multiple viewers. The string describes how the viewer displays its data. If you had
aviewer that displayed postscript files graphically, the string might read View Postscript graphics.

The other parameters passed to the document template object are the suffix filter used to display filesin

the File dialog boxes, the default directory to use, the default file suffix to use, and a document template
flag value.

A short example

MSJ- Ted Faison Nov 27, 1993 OWL 2.0 Tour page 5

To show how documents, viewers and document templates simplify program development, I'll develop a
short browser application, called VIEWER, that letsyou view filesin two different ways:. as text and as
hex data. The File menu of VIEWER has the standard commands New, Open and Close, all supported
automatically by OWL code. The are no File | Save or File | Save As commands in VIEWER, since the
application is not designed to let you make changes to files, but OWL does support these and many other
standard commands.

When a document has more than more viewer, a small problem arises when you ask OWL to create a new
file of that type, or open a preexisting document. Which viewer should OWL use? Only the user knows,
s0 OWL asks the user. When you select the File | New command in VIEWER, OWL displays the small
popup menu shown in figure 3.

Text viewer
Hex viewer

Figure 3 - The viewer selection popup menu displayed by OWL in VIEWER to select a document viewer.

The text in the popup menu is defined by the programmer, in the document template objects. Y ou select
the viewer type desired, then press ENTER, and OWL showsthe document accordingly. If you open a

document with the File | Open command, the common File Open dialog box is displayed, in which the
Li st Files OF Type combo box isused to select the desired viewer, as shown in figure 4.

MSJ- Ted Faison Nov 27, 1993 OWL 2.0 Tour page 6

File Mame:

Directones:

* hat

ch

autoexec.bat
cfe bat
copyhle.bat
m_bat

p.bat

tbat

u.bat

y.bat

|1| B oy
"] acroread
] articles

=] bcd
(] book3

] dos

Lizt Files of Type:

("] sbpro

Drives:

Text viewer

Text viewer
Hex viewer

= c: faison

Figure 4 - The viewer selection combo box in the File Open dialog box used by OWL.

As stated earlier, OWL provides two standard viewer classes TEdi t Vi ewand TLi st Vi ew. The former
displays datain text format. It supports standard editing operations, such as Cut, Copy, Paste and Undo,
plus text searching commands like Find, Replace and Next.

| used aTEdi t Vi ew object to display text in VIEWER. For hex data, | derived a simple class from
TEdi t Vi ew, and made a few changes. Figure 5 shows VIEWER after opening one file in text mode and

one file in hex mode.

MSJ- Ted Faison Nov 27, 1993

OWL 2.0 Tour

page 7

= ASCI { Hex file viewer |+
File Edit Search M¥indow Help

= AUTOEXEC.BAT [+~
CAWINDOWS\SMARTDRY.EXE L+
@ECHO OFF =
CLS

PROMPT SpSg
PATH=CABCA\BIN;D:\BC31\BIN; D:AWINWORD; CAWIND OWS;C:ADOS; C:ADO

C:I‘DGSI‘MGDE l'n‘."n"‘lhl OATE 309 LDl A%
CADOSMMOUSE = CONFIG.5YS -

CASBPROVDRM|La 45 56 49 43 45 30 43 34 5C 44 4F 53 5C 53 45
REM CADOSASK| 54 56 45 52 2E 45 558 45 0D 0L 44 45 56 49 43 45
CADOS\DOSKEY| 30 43 34 5C 57 49 4E 44 4F 57 53 50 45 49 4D 45
4p ZE 53 59 53 0D 0O 44 4F 53 30 48 49 47 45 0D
BEM Windows |02 46 49 4C 45 53 3D 37 30 0D 04 53 54 41 43 4E
REM 53 3D 39 2C 32 35 36 OD O& 42 55 45 46 45 52 53
REM The normi| 30 36 34 0D 04 53 48 45 4C 4C 3D 43 34 SC 44 4F
53 5C 43 4F 4D 4D 41 4F 44 2ZE 43 4F 4D 20 2ZF 50
I 20 ZF 45 3A& 31 30 32 34 0D 0L 44 45 56 49 43 45

; 3D 43 34 5C 53 42 50 52 4F 5C 44 52 56 5C 53 42
50 43 44 2E 53 59 53 20 2F 44 34 4D 53 43 44 30
30 31 20 2F 50 34 32 32 30 O 0O OD DA 52 45 4D
20 57 69 6E &4 6F 77 73 20 4E 54 20 44 4F 53 20
73 75 62 73 79 73 74 65 6D 0D 0OA 52 45 4D 0D 04
52 45 4D 20 54 68 65 20 6E &6F 72 6D 61 6C 20 63

[[+

-4-|| -

| \CAPS | OWR
Figure 5 - The two viewers supported by VIEWER, for text and hex data.

| called the hex viewer class THex Vi ew. | really only added two features to the class, to make it use a
fixed pitch font and to display its datain hex/ASCII format. Listing 1 shows the declaration for class
THex Vi ew, and Listing 2 shows the implementation.

#i fndef __ HEXVI EW HPP
#define __HEXVI EW HPP

#i ncl ude <owl \ edi tvi ew. h>
class THexView : public TEditView {

char HexToAscii (char);
HFONT fi xedPi t chFont ;

public:

THexVi ewm TDocunent & doc, TW ndow* parent = 0);
~THexVi ew() ;

static LPCSTR StaticNanme() {return "Hex View';}
BOOL Create();
void Flush() { }

}s
#endi f

MSJ- Ted Faison Nov 27, 1993 OWL 2.0 Tour page 8

Listing 1 - The declaration of the hex viewer class.

#i ncl ude "hexvi ew. hpp"
#i ncl ude <strstrea. h>

THexVi ew. : THexVi ew(TDocunent & doc, TW ndow* parent)
: TEdit Vi ew(doc, parent)

fi xedPi tchFont = CreateFont(15, 0, 0, 0, 0, 0, 0, O,
0, 0, 0, 0, FIXED_PITCH,
"Courier New');
}

THexVi ew. : ~THexVi ew()

Del et eCbj ect (fi xedPi t chFont);
}

BOOL THexVi ew. : Creat e(){
if (!TEditView :Create())
return FALSE;

char* data = LockBuffer();
Unl ockBuf f er (data, FALSE);
if (!data) return FALSE;

/'l change the data from ASCII to Hex ASCII,
/1 e.g. the byte value 0x24 is converted to 0x32 0x34 0x20,
/1l so 0x24 would display as the string "24 "
ostrstream newDat a;
for (int charsOnLine = 0; *data; data++) {
newDat a << HexToAscii (*data >> 4)
<< HexToAscii (*dat a)
<< ' '
/'l show only 16 bytes per line
charsOnLi ne += 3;
i f (charsOnLine >= 48) {
charsOnLi ne = 0O;
newData << "\r\n";
}
}

newDat a << ends;

/1 now enpty the edit control and put the converted
/] data into it

Post Message(WM _SETFONT, (WPARAM fi xedPitchFont, 0);
Set W ndowText (newDat a. str());

newDat a. r dbuf () - >freeze(0);

return TRUE;

}
char THexVi ew. : HexToAsci i (char c¢)

static char value [] = {"0123456789ABCDEF"};
return value [c & OxOF];

}

Listing 2 - The implementation of the hex viewer class.

OWL objects are fully persistent in general, but containers in the so-called BIDS container classlib are
not, the rationale being that OWL is a Windows product, while the BIDS clasdlib is completely general-
purpose. It is amost inconceivable to develop a non-trivial OWL application without using the contai ner

MSJ- Ted Faison Nov 27, 1993 OWL 2.0 Tour page 9

classlib classes, so you will generally have to add persistence to the BIDS containers you use. See the
section on persistence, later in the article, for a description of how to add persistence to BIDS containers.
The containers used in MFC 2.5 are part of the library itself, and have built-in support for persistence,
also called serialization or streaming.

Getting back to the code in listing 2, the The member function THexVi ew: : Cr eat e() iswhere all the
work isdonein THexVi ew. It calls the base class TEdi t Vi ewto fill the client area's edit control with text
from afile, then changes the data to hex/ASCII format. The class contructor and destructor create and
destroy the fixed pitch font used by the viewer. Listing 3 shows the rest of the implementation of
VIEWER.

#i ncl ude <owl \ applicat. h>
#i ncl ude <ow \decndi fr. h>
#i ncl ude <ow \ st at usba. h>
#i ncl ude <ow \ edi tvi ew. h>
#i ncl ude <ow \fil edoc. h>
#i ncl ude <ow \di al og. h>

#i ncl ude "hexvi ew. hpp"
#i nclude "viewer.rc"

DEFI NE_DOC_TEMPLATE_CLASS(TFi | eDocunent, THexVi ew, HexTenpl at e);
DEFI NE_DOC_TEMPLATE_CLASS(TFi | eDocunent, TEditVi ew, Edit Tenpl ate);

Edi t Tenpl ate a("Text viewer", "*.bat","C\\", 0,
dt Aut oDel ete | dt ReadOnl y);
HexTenplate b("Hex viewer", "*. *" "C\\", 0,
dt Aut oDel ete | dt ReadOnl y);

class TViewerApp : public TApplication {
TMDIClient* Client;

public:
voi d | nit Mai nW ndow() ;

voi d CnEnabl eSave(TCommandEnabl er & handl er)
{ handl er. Enabl e(FALSE) ; }

voi d CnEnabl eSaveAs(TCommandEnabl er & handl er)
{ handl er. Enabl e(FALSE) ; }

voi d EvNewi em TVi ew&) ;

voi d EvC oseVi ew(TVi ewg&) ;

voi d CrrHel pAbout ();
DECLARE_RESPONSE_TABLE(TVi ewer App) ;

b

DEFI NE_RESPONSE_TABLEL1(TVi ewer App, TAppl i cati on)
EV_COMVAND ENABLE(CM FI LESAVE, CnEnabl eSave),
EV_COMVAND_ENABLE(CM_FI LESAVEAS, CnEnabl eSaveAs),
EV_OALVI EW dnCr eate, EvNewi ew),

EV_OALVI EW dnCl ose, EvC oseVi ew),
EV_COMVAND(CM_HELPABOUT, CnHel pAbout),
END_RESPONSE_TABLE;

voi d TVi ewer App: : | ni t Mai nW ndow()

DocManager = new TDocManager (dmivDl | dmivenu);
TDecor at edFr ane* franme =
new TDecor at edMDl Frame("ASCI | / Hex file viewer", O,
*(Client=new TMDIClient), TRUE);
TSt atusBar* sb = new TStatusBar(frane, TGadget:: Recessed,

MSJ- Ted Faison Nov 27, 1993 OWL 2.0 Tour page 10

TSt at usBar : : CapsLock |
TSt at usBar : : NunLock |
TSt at usBar: : Overtype);
frame->l nsert (*sb, TDecoratedFrane:: Botton);
Mai nW ndow = frane;
Mai nW ndow >Set MenuDescr (TMenuDescr (I DM MAIN, 1,0,1,0,1,1));
}

voi d TVi ewer App: : EvNewi ew(TVi ew& vi ew)

TMDI Chil d* child = new TMDIChild(*Cient, 0, view GetWndow));
chi | d- >Set MenuDescr (TMenuDescr (I DM_EDI TVI EW 0, 2,0, 0, 0,0));
chil d->Create();

}

voi d TVi ewer App: : EvCl oseVi ew(TVi ew& Vi ew)

TW ndow* client = view Get Wndow();
if (client) {
TW ndow* child = client->Parent;
if (child) {
client->Set Parent (0);
chi | d- >Shut DownW ndow() ;

}
}
}

voi d TVi ewer App: : CmHel pAbout ()
TDi al og(Mai nW ndow, DI ALOG_HELPABQOUT) . Execut e() ;

int OM Mai n(int, char**)

return TVi ewer App() . Run();
}

Listing 3 - The implementation of VIEWER, an OWL application to browse filesin text or hex/ASCI|
format.

VIEWER sets up the two document templates of type Edi t Tenpl at e and HexTenpl at e. The main
application class TVi ewer App is derived from the standard OWL class TAppl i cati on. | only added a
couple of member functionsto TVi ewer App, to handle a few basic menu commands. The function

TVi ewer App: : EvNewVi ew() changes the main menu when a view window is opened, adding
commands to support editing. VIEWER demonstrates a new menu handling mechanism used in OWL
2.0. The mechanism is adapted from the in-place activation menu scheme of OLE 2.0, which allows
menus from a container document to be merged at runtime with menus from embedded OLE objects. In
OWL, the container and activation objects correspond to the MDI frame window and the MDI child
windows. The MDI frame window has its own menu, which is shown when no MDI child windows are
open. When you open a child window, OWL merges the frame window's menu with the MDI child
window's menu. Each MDI child window can have its own menu. When you close an MDI child, OWL
automatically restores the menu. The whole mechanism is controlled through menu objects of class
TMenuDescr , and allows very fancy runtime menu switching in OWL applications with almost no
application code of your own.

The function TVi ewer App: : | ni t Mai nW ndow() creates two types of windows: a

TDecor at edVDI Fr ane and a TSt at usBar . The former handles all the top level MDI commands, such
as Window | Tile and File | Open, while the latter handles the status bar at the bottom of the main
window. I'll describe both classes briefly in the next section.

MSJ- Ted Faison Nov 27, 1993 OWL 2.0 Tour page 11

VIEWER doesn't allow you to save files, so it disables the File | Save and File |[Save As commands, using
OWL objects of class TCommandEnabl er , which are equivalent to the CCndUl objectsin MFC 2.5.

Window Types

OWL 1.0 provided support for four basic window types: general-purpose windows (class TW ndow),
dialog boxes (class TDi al og), MDI frame windows (class TMDI Fr ane) and child control windows
(TCont r ol). Since the introduction of Windows 3.0 back in 1990, several kinds of standard windows
have become very popular, such as status bars, messages bars, tool bars, etc. OWL 1.0 required you to
implement your own, using the 4 basic window types TW ndow, TDi al og, TMDI Fr ame and TCont r ol ,
but OWL 2.0 has been extended to support the new window types, and has classes to simplify other
common programming tasks, such as the use of a dialog box as the main window, the creation of position
or size-constrained windows, or the development of custom controls. For example, to create a grid custom
control, you would derive a class from TCont r ol . Class TCont r ol supports either directly or indirectly
many of the features of child controls, such as parent notification messages, owner-draw functions,
painting and persistence. Figure 6 shows the hierarchy of the OWL 2.0 window classes:

TWindow

TFrameWindow TLayoutWindow TGadgetWindow

TMDIChild TMDIFrame TDecoratedFrame

TDecoratedMDIFrame

TToolBox TMessageBar TControlBar

TStatusBar

Figure 6 - The hierarchy of basic window types supported by OWL 2.0.

Apart from the basic class TW ndow, the most important window classes used in typical applications are
the following:

TFrameWindow
TDecoratedFrame
TLayoutWindow
TStatusBar
TControlBar
TToolBox

I'll describe the first two one briefly, the latter four a bit more in detail. Y ou use TFr ameW ndow either
directly or as a base class when you have a window that also manages a child window in its client area.
MDI applications are a good example, because they use awindow of class TMDI Cl i ent to handle the

MSJ- Ted Faison Nov 27, 1993 OWL 2.0 Tour page 12

MDI child windows. OWL applications use a TFr aneW ndow (or derivative) as the main window.
Actualy, in MDI applications, you use the class TMDI Fr ane, derived from TFr aneW ndow. Class
TFr ameW ndow has a parameter allowing it to shrink itself down to the size of the child window,
allowing you to make a child control or dialog box look like a regular overlapped window.

You use class TDecor at edFr ane, and the derived TDecor at edMVDI Fr ame, when you have awindow to
which you want to add status bars, tool bars, or other decorations. Class TDecor at edFr anme has an

i nsert () member function, that takes a reference to awindow, and a window position. Using

TDecor at edFrame: : i nsert (), for example, you can add a status bar to the window, and tell

TDecor at edFr ame to put the window at the top, left, right or bottom of the client area. Y ou can add
multiple decorations to the same window. TDecor at edFr ane and TDecor at edMDI Fr ane are the
classes used as main windows in the majority of OWL applications.

Layout Windows

Child windows are used for all sorts of things. The only real visual constraint child windows have is that
they are clipped to the client area of their parent window, but a child window's size and position are
otherwise pretty much independent of the parent. Sure, moving the parent causes the child to also be
moved, but that's about it. There is awhole category of child windows whose position, size, or both are
required to be a function of some parameter of the parent window. Without searching for exotic examples,
just consider a couple a common cases. status bars always need to be at the bottom of the parent, tool bars
always at the top. But you might also want to create a child window whose size is afunction of the
parent's size, or whose height is afunction of the width. These types of windows are called constrained
windows. OWL 2.0 has a special class designed to make it easy to create constrained windows. The class
iscaled TLayout W ndow, and lets you set a variety of constraints on the size and position of awindow.
A short example will help.

Consider an application whose main window has a smaller child window that displays a digital clock. You
might want the clock window to always occupy a small portion of the parent, so its left and top borders
must be positioned based on the parent's size. Y ou might also want the clock to appear aong the lower
right border of the parent, so the clock'’s right and bottom borders will also need to be constrained in terms
of the parent's size. Using TLayout W ndow, OWL makes creating such a constrained child very easy. All
you do is make the parent window a derivative of class TLayout W ndow, and use a special layout object
of classTLayout Met ri cs to give the appropriate size and position contraints to the child window.
OWL's constrained windows are a rather interesting and unique feature. MFC 2.5 doesn't have any classes
to support constrained windows.

To show the details of creating constrained windows, | wrote a short OWL application called LAYOUT
that has a main window with a small gray child window positioned near the right bottom border. The size
of the child is constrained to be 35% of the parent's size, so resizing the parent you get a differently sized
child window. Figures 7 and 8 show how the main and child windows looks for different sizes of the main
window.

MSJ- Ted Faison Nov 27, 1993 OWL 2.0 Tour page 13

Figure 7 - A child window displayed by LAY OUT.

Figure 8 - How the child window is displayed after resizing the parent window in LAY OUT.

The code for LAYOUT isshown inlisting 4.

#i ncl ude <owl \framew n. h>
#i ncl ude <owl \ applicat. h>
#i ncl ude <ow \l ayoutw . h>
#i ncl ude <owl \col or. h>

class TC ockW ndow : public TW ndow {

public:
TdA ockW ndow(TW ndow* par ent)
TW ndow parent, "") {
Set BkgndCol or (TCol or (192, 192, 192));
Attr.Style = Ws_ CHI LD | W5_BORDER | W5 _VI Sl BLE;
}
b

cl ass TM/W ndow. public TLayout W ndow {
pr ot ect ed:

TW ndow* cl ock;
voi d Set upW ndow();

public:

TMyW ndow(TW ndow* par ent)
. TLayout W ndow(parent, 0) {
Attr. Style | = W5_BORDER,;
cl ock = new TA ockW ndow(t hi s);
}
b

voi d TMyW ndow. : Set upW ndow()
TLayout W ndow: : Set upW ndow() ;

TLayout Metrics netrics;
netrics. X. Set (I nLeft, InmPercentOf, |nParent, |nRight, 60);

MSJ- Ted Faison Nov 27, 1993 OWL 2.0 Tour page 14

netrics.Y.Set(|nTop, |nPercent™, |nParent, |nBottom 60);
netrics. Wdt h. Set (I mRi ght, | nPercentOf, InParent, |nRight, 95);
netrics. Hei ght. Set (I nBottom | nPercentOf, | nParent, | nBottom 95);
Set Chi | dLayout Metrics(*cl ock, metrics);
Layout () ;

}

cl ass TLayout App : public TApplication {

public:
voi d | nitMinW ndow() {
Mai nW ndow = new TFraneW ndow(0, "Using Layout W ndows",
new TM/W ndow(Q));
}

1
int OM Mai n(int, char**)

return TLayout App(). Run();
}

Listing 4 - LAYOUT, a short OWL application demonstrating the use of constrained windows with class
TLayout W ndow.

OWL handles position and size contraints using a set of equations, which are internally solved using
matrix inversion. Class TLayout Met ri cs isused to set the constraints. Y ou can specify the position of
any border of awindow in terms of either a parameter in the parent window or the child window itself.
You can easily create windows that are a percentage of the size of the parent, or that are positioned at a
point that depends on the size of the parent. Y ou can also create windows that maintain a constant aspect
ratio even after resizing the window. For example, you might want a square child window to have a width
of 1/3 the parent's width, thus the height would be constrained to the width. Thisis easy to accomplish
with TLayout Met ri cs, because you can independently specify a constraint for the x, y, width and height
of awindow -- aslong as one constraint doesn't violate another. LAY OUT uses the constraints:

netrics. X. Set (I nLeft, InmPercentf, |nParent, |nRight, 60);
netrics.Y.Set(|nTop, |nPercent™, |nParent, |nBottom 60);
netrics. Wdt h. Set (I mRi ght, | nPercentOf, InParent, |nRight, 95);
netrics. Hei ght. Set (I nBottom | nPercentOf, |InParent, | nBottom 95);

to position and size the child window. The data members TLayout Metrics :: Xand
TLayout Metrics Y areof class TEdgeConstrai nt . Thefunction TEdgeConstraint:: Set(..)
is declared like this:

voi d TEdgeConstraint:: Set (TEdge edge,
TRel ati onshi p rel ati onshi p,
TW ndow* ot her W ndow,
TEdge ot her Edge, int value = 0);

The W dt h and Hei ght data members are of class TEdgeOr W dt hConst rai nt, and haveaSet (.. .)
member function similar to TEdgeConst r ai nt .

Status Bars

Status bars are used in almost every major Windows application today. The information shown on a status
bar is highly application-dependent, but many apps use the status line in a dual mode: to display a hint
when amenu item is selected, and to display the status of certain keys on the keyboard. For example,
selecting the File menu in WinWord using the Alt-F key sequence, the string Creates a new document or
template appears on the status line. Canceling the operation with the ESC key, the status line changes into

MSJ- Ted Faison Nov 27, 1993 OWL 2.0 Tour page 15

amultiple field bar. The fields on the right side show the keyboard options selected. WinWord displays
the string OVR when the insert key is in the overtype mode, the string CAPS when the caps lock key is
pressed, and so on. OWL handles status bars through the class TSt at usBar , providing functionality
similar to that of WinWord. OWL has built-in support for the keyboard tracking options shown in table 1.

Keyboard Tracking Option | String Displayed
Extended Selection enabled EXT
Caps Lock enabled CAPS
Num Lock enabled NUM
Scroll Lock enabled SCRL
Overtype enabled OVR
Macro Recording enabled REC

Table 1 - The keyboard tracking options supported by OWL.

Objects of class TSt at usBar don't [imit themselves to just tracking the status of the keyboard. Y ou can
add other fields to the status bar by using the member function TSt at usBar : : i nsert () toinsert
objects derived from class TGadget . By doing do, you could easily add afield that displayed the mouse
coordinates, afield that showed the row/column position of the insertion bar, the color selected into a
painting tool, etc.

Control Bars

Applications like WinWord and BCW use toolbars (called Control Barsin OWL) to expedite operations
with amouse. The tools on atool bar are the mouse equivalent of accelerator keys for keyboard users.

Tool bars have become so widespread that Borland decided to support them directly in OWL, using a class
named TCont r ol Bar . The buttons on the tool bar are of class TBut t onGadget , and can be positioned
freely on the tool bar. Borland provides bitmaps for many common tool bar commands, such as File New,
File Open, File Print, Edit Cut, Edit Copy, etc. To make your own button, all you need to do is provide
abitmap for it (and code to handle it!). For standard operations like File New or File Open, you often
don't need to add any code of your own. Figure 9 shows a sample tool bar created with OWL:

] =3 =1 N S

Figure 9 - A simpletool bar created with OWL.

The first two buttons are enabled, the others are grayed out. OWL has code to automatically enable or
disable menu and toolbar buttons, based on whether the active window is capable of processing the
menu/tool bar button or not. The code to create the tool bar in figure 9 is extremely simple, and shown in
listing 5

TControl Bar* cb = new TContr ol
cb- >l nsert (*new TButt onGadget (
cb- >l nsert (*new TButt onGadget (
cb- >l nsert (*new TButt onGadget (
cb- >l nsert (*new TSepar at or Gadget (6)) ;

cb- >l nsert (*new TButt onGadget (CM _EDI TCUT, CM EDI TCUT));

cbh- >l nsert (*new TButt onGadget (CM_EDI TCOPY, CM EDI TC(PY))
cbh- >l nsert (*new TBut t onGadget (CM _EDI TPASTE, CM EDI TPASTE))
ch- >l nsert (*new TSepar at or Gadget (6)) ;

cb- >l nsert (*new TButt onGadget (CM_EDI TUNDO, CM EDI TUNDO)) ;
frame->l nsert (*cb, TDecor at edFrame: : Top);

o

ar (frane);
| LENEW CM FI LENEW);

(
F
I FI LEOPEN, CM FI LECPEN)) :
F
6

2282

| LESAVE, CM FI LESAVE));

A|

MSJ- Ted Faison Nov 27, 1993 OWL 2.0 Tour page 16

Listing 5 - The code needed to create the toolbar in figure 9.

The codein listing 5 creates the toolbar buttons, using objects of class TBut t onGadget . The variable

f r ame isapointer to aTDecor at edFr ame window. The code in listing 5 would typically be part of the

I ni t Mai nW ndow() function for the top level application window. Tool bars can be displayed aong any
border of their parent window.

Tool Boxes

Tool boxes are windows that contain buttons. Tool Boxes may be floating or fixed. Floating boxes can be
moved around on the screen, fixed ones can't. For example, Resource Workshop uses a floating Tool Box
inits Dialog Box editor. Microsoft Draw uses afixed Tool Box for its drawing tools to create Dialog
Boxes. Tool Boxes of both types can easily be created in OWL, using class TToolBox. MFC 2.5 supports
fixed Tool Boxes, but not floating ones. Figure 10 shows an example of an OWL Tool Box.

Figure 10 - A sample Tool Box created with OWL.

A floating Tool Box window uses a combination of two control objects for the enclosed buttons:

TTool Box and TFl oat i ngPal et t e. A Tool Box window is the parent window of the buttons. It isa
borderless window with a gray background, and lays the child buttons out in a predefined order (by rows
or columns), computing the button spacing. A TFl oat i ngPal et t e window uses a TTool Box tofill its
client area, and handles mouse clicking on the contained buttons.

Exception Handling

Exceptions were recently added to the proposed C++ ANSI draft. OWL 1.0 was devel oped before
exceptions had been accepted into the language, and used an ad hoc error handling mechanism. C++ was
inherently weak in dealing with problems arising in object constructors. A very common activity in OWL
programs is the creation of window objects. If awindow could not be successfully constructed due to
insufficient memory, the object constructor had no way to return a value indicating the error.. The
function TModul e: : MakeW ndow() was used to take a pointer to a TW ndows Cbj ect object and make
sureit wasvalid. In OWL 1.0, awindow was created with code like this:

voi d TMyW ndow: : Cr eat eW ndow()
Get Appl i cati on() - >MakeW ndow(new TNewW ndow(t his));

MakeWindow called TMbdul e: : Val i dW ndow() to check the window passed to it. If the window was
invalid, due to insufficient memory, an invalid resource name, or other reason, MakeW ndow() returned a
NULL value.

MSJ- Ted Faison Nov 27, 1993 OWL 2.0 Tour page 17

With OWL 2.0, window checking is handled differently, using exceptions. If awindow fails to be
constructed for any reason, an exception is thrown. Code to create awindow is put in atry block,
resulting in code like this:

void TMyW ndow:. : Cr eat eW ndow()
{
try {
TW ndow* wi ndow = new TNewW ndow(t hi s);
}
cat ch(TExcepti on& problenm {
MessageBox(probl em why().c_str(),

"Couldn't create a Wndow');
throw(problem); // let OAN abort the application

}

The call to TW ndow: : MessageBox() has the parameter

probl em why().c_str()

which evaluates to a string describing the exception thrown. OWL 2.0 uses a small class hierarchy to
handle its own exceptions, as shown in figure 11.

Xmsg

|—TXOWI

—— TXCompatibility

— TXGdi

—— TXInvalidMainWindow
—— TXInvalidModule
—— TXMenu

—— TXOutOfMemory
L TXValidator

—— TXWindow
Figure 11 - The OWL class hierarchy dealing with exceptions.

The base class xmsg is defined in the ANSI draft proposal. When you create an xmsg object, you can pass
astring to its constructor. string is another ANSI defined C++ class, used to manage (what else?) null-
terminated character arrays. The function xnsg: : why () returns areference to this string, which in turn
has the function string::c_str() which returnsaconst char* pointing at the actual null-terminated
array. Class string allocates memory for its character array from the global heap, so it doesn't eat up an
application's default data segment.

OWL has built-in handlers for the exceptions it throws. These handlers display an error message and
typically terminate your application. Y ou can easily change the default error handling by catching OWL
exceptions yourself.

Another common exception in OWL programs is xalloc. This error is thrown whenever a call to new
could not be honored due to insufficient or fragmented memory. xalloc is another standard C++ exception,

MSJ- Ted Faison Nov 27, 1993 OWL 2.0 Tour page 18

and the default OWL handler displays an error message and terminates your application. OWL 2.0 also
accepts the newly adopted exception interface specifications, whereby a function can declare the types of
exceptionsiit, or any function called under it, can throw. The use of such specifications requires the system
to handle exceptions that were thrown in violation of the declared exception types. Such exceptions are
called unexpect ed, and are handled by the function installed by the last call to the standard C++
function set _unexpect ed() . By default the function unexpect ed() is called, which in turn causes
your program to be aborted. Y ou can install your own handler for unexpected exceptions, although the
default handler will generally be adequate.

Failures in Windows programs can occur when windows are being created, or memory is being allocated.
xalloc is used when the global new operator fails, but memory is also allocated by OWL, with calls to

d obal Al | oc() , to handle device independent bitmaps inside class TDi b.. OWL uses the exception
TXG&i tosignal when ad obal Al | oc() call failsinan OWL GDI class like TDi b The string passed in
the TXGdi exception describes what specific type of problem occurred. OWL doesn't provide a special
handler for TXGdi exceptions, so unless you have one of your own, the default OWL exception handler
will display the usual error message and kill your application.

Templates

Templates were introduced in the ANSI draft for the proposed C++ standard some time ago. OWL 1.0 had
already been developed by then, to a good extent, so it made no use of templates. Because of the
advantages of class templates in many situations, Borland decided to use templates extensively in OWL
2.0. Thefollowing isalist of some of the things templates are used for in OWL 2.0.

Document templates
Event Handlers

DLL Library Manager
Message Cracking

Templates are also used in the container classes used with OWL 2.0. In the implementation of a container
classlibrary, there are really two choices. Y ou can make the containers parameterized, using templates, or
you make the containers accept generic items derived from a common base class. For example OWL 1.0
used containers that worked with items derived from the base class Obj ect . MFC 2.5 uses containers that
take items derived from CObj ect . This approach is very convenient -- especially with heterogeneous
containers (containers holding objects of different types), because you can use polymorphism to handle the
contained objects.

The drawback of the approach is a certain lake of type safety. If you don't not know a priori the types of
the objects in a container, you must use ad hoc identification functions, such as| sA() or | ski ndof (),
or use runtime type identification. The problem is that you need to deal with type identification (or at least
typecasting) every time you take an object out of a container, not only forcing the programmer to track
object types, but increasing the chances of introducing bugs into the system through invalid type
conversions. Templates force you to make a single type commitment at compile time, letting the compiler
keep track of types.

The alternative to a template container is a container that takes void pointers, which is the approach taken
by MFC 2.5. MFC defines containers for certain specific types, such as unsigned chars, words and
pointers to CObj ect s. Unfortunately, not all data types you create are of this kind. Consider for example
a container to handle floating point values. With MFC, you have two choices: you either use a container
taking void* types, or you create a class, derived from CQbj ect , to handle floating point numbers. The
first choice requires the use of typecasts on all container operations, which is an un-object-oriented,
verbose and bug-prone process. The second choice allows you to use containers that take pointersto

MSJ- Ted Faison Nov 27, 1993 OWL 2.0 Tour page 19

Cbj ect s, which is object-oriented, but unnecessarily complicated since it forces you to create a new
class even for scalar items like float and signed char.

Template containers are a simple solution: for any type of data you can create a specific container type.
But what if you need a heterogeneous container, capable of holding different types of objects derived from
a common type. For example, you might have two classes TChai r and TTabl e, both derived from a class
TFur ni t ur e. Using templates, you would create a container taking pointers or references to

TFur ni t ur e objects, using polymorphic calls to handle the objects in the container. Template containers
are a natural way to deal with generic types, allowing you to write simpler programs, and simplicity is
exactly what object-oriented programming is about.

Message Cracking

OWL 2.0 goes further than 1.0 in encapsulating Windows details. One of the enhancements made is the
cracking of Windows messages, a feature also supported by MFC 2.5. Under OWL 1.0, all Windows
messages were handled by OWL functions taking a reference to a TMessage parameter. TMessage was
essentially a struct that had afield for an HWND, a WORD, a WPARAM and a LPARAM parameter.
Each Windows message handler had to perform explicit type casting on the TMessage fields, a process
that was entirely un-object-oriented and also error-prone. With message cracking, OWL does all the type
conversions on the TMessage fields for you, invoking message handlers with the correct types. For
example, under OWL 1.0, the WM_CREATE message handler looked like this:

voi d TM/W ndow:. : Cr eat e(TMessage& nsg)

(CREATESTRUCT FAR*) | pcs = (CREATESTRUCT FAR*) nsg. LP;
/'l use |pcs...

}
With OWL 2.0, the handler looks like this:

voi d TMyW ndow. : EvCr eat e(CREATESTRUCT far & | pcs)

/'l use |pcs...

}

All Windows messages are cracked, removing the burden from the programmer, and further reducing the
likelihood of bugs getting into the system.

Persistence

One of the greatest stumbling blocksin OWL programs was making an application persistent.
Applications with a simple main window were easy to make persistent, but non-trivial applications with
hierarchies of multiple windows could be very nasty indeed. Under OWL 1.0, any class that was to
support persistence had to be derived from class TSt r eamabl e, and override 5 member functions, putting
each in the right access section. For class TMyW ndow, the functions would be declared like thisin OWL
1.0:

public:
static PTStreanabl e build();

pr ot ect ed:

MSJ- Ted Faison Nov 27, 1993 OWL 2.0 Tour page 20

TMyW ndow(St r eamabl el ni t);
virtual void wite (opstream& os);
virtual Pvoid read (ipstream& is);

private:

virtual const Pchar streanmabl eName() const;

where the types opst r eamand i pst r eamare input and output persistent stream objects. OWL 2.0 uses
the same basic approach to supporting persistence as OWL 1.0, but introduces a number of simplifications
and enhancements. First, you no longer have to add the 5 member functions yourself. The new macro
DECLARE_STREAMABLE adds the necessary member functions to a class automatically.

Supporting persistence is not atrivial task for aclass library. There are several inherently difficult
problems that need to be dealt with, mainly dealing with the issue of pointers. Pointers and streams are
incompatible objects, so anytime you insert or extract a pointer from/to a stream there is going to be
trouble. During the insertion phase, if a pointer to an object is somehow inserted, then you have to make
sure the object pointed at is also inserted. Insertions of multiple pointers to the same object should cause
only asingle instance of the object referenced to be saved.

During the extraction phase, the problem is even more complex. First of all, all objects must be
recognizable in type by the system, so they can be reconstructed and initialized from the streamed data.
Second, the pointer problem is still there. Extracting a pointer from a stream requires the object pointed at
to also be reconstructed from the stream. If multiple pointers are extracted that reference a common
object, the system need to be smart enough to instantiate only a single object, and to set the pointers up
correctly. With OWL and other Windows class libraries, there is a further complication represented by
Windows hierarchies. Windows have parents, children and siblings. When extracting a window from a
stream, OWL must be capable of restoring the hierarchy that was originally inserted. This feat may appear
straightforward, but it actually somewhat involved.

OWL takes care of the problems of persistence using an object known as the stream manager. This object
uses an internal database to keep track of what's going on in the system., When you insert objects into a
stream, the manager saves the abject information in its database. When inserting pointers, the manager
uses the database to avoid inserting multiple instances of the object pointed at. When extracting objects,
the stream manager uses the database to determine how to reconstruct new objects, based on type
information saved with the object. The database also allows pointers to be resolved correctly.

Although all OWL 2.0 classes are designed to be fully persistent, AppExpert is not capable of creating
persistent applications. What is a persistent application ? Say you wanted to create an MDI editor
application, similar to the BC 4.0 editor. If you exit BC 4.0 with certain edit windows opened, those same
windows will appear the next time you enter BC 4.0. The application knows which edit windows to open
because it streamed the windows out when you closed the application, and streamed them back in when
you opened the app. Anything you stream in will be in the same state it was when it was streamed out.
Persistent applications are very common, and many users have come to expect that a program will start up
where it was last left. To create persistent apps with OWL 2.0, you have to add the necessary code
yourself, which typically requires cutting and pasting about a page of code from the OWL example
programs.

The Visual C++ AppWizard is slightly better, in one sense, because it sets up all skeletal code for a
persistent (serializable) application, leaving the developer only with the task of deciding what data to
stream in or out, and add a small amount of code. The big problem is that MFC 2.5 doesn't know how to
stream entire windows, like MDI child windows, or objects derived from Cwhd. MFC only lets you stream
data objects, such as scalars or objects derived from CDocunment or CObj ect -- not windows. If you use
MFC's document/view model, you can stream the document data in or out, but that isn't sufficient to let an

MSJ- Ted Faison Nov 27, 1993 OWL 2.0 Tour page 21

application startup and restore all the windows that were opened in the previous run, maintaining their
old positions, sizes and attributes. With OWL 2.0, thisis not only possible, but relatively easy,

OWL containers are not persistent

Borland C++ 4.0 comes with a number of classlibraries. One is OWL 2.0, but there are others, like the

i ost reamlibrary and the BIDS container library. OWL 1.0 used to have its own containers, which were
not only tightly bound to OWL classes, but also persistent in an OWL-compatible way. The OWL 1.0
containers were very simple, and seemed an unnecessary duplication of the code in the full-blown
container class library. With OWL 2.0, Borland opted to eliminate the OWL containers completely, and
use the general-purpose template BIDS containers.

Consider awindow class TMyW ndow using a template container Tl Set AsVect or <i nt > to hold
pointers to integer values. To make the data in the container persistent, in theory you have two
alternatives: you either make class TMyW ndow read and write the container's data, or you derive a class
from TI Set AsVect or <i nt > and make it handle the details of reading and writing its own data. Only the
first alternative is supported by OWL. Y ou can't make a template class directly streamable. The macros
used to support persistence, such as IMPLEMENT_STREAMABLEZ1, don't work with template classes.
The code in listing 6 shows how you would read and write the container's data from class TMyW ndow.

#i ncl ude <ow \ wi ndow. h>
#i ncl ude <cl asslib\sets. h>
#i ncl ude <cl assli b\ objstrm h>
class TM/W ndow : public TW ndow {
public:

/1

private:

static void WiteObject(int& obj, void *);
Tl Set AsVect or <i nt > Val ues;

DECLARE_RESPONSE_TABLE(TM/W ndow) ;
DECLARE_STREAMABLE(OW.CLASS, TM/W ndow, 1)

}s
| MPLEMENT _STREAMABLE1(TMyW ndow, TW ndow) ;

voi d* TMyW ndow: : Streaner:: Read(i pstream& i s, uint32) const

{
ReadBasebj ect ((TW ndow*) Get Obj ect (), is);
int count;
is >> count;
while (count--) {
i nt* aNunber;
is >> *aNunber;
Get Obj ect () - >Val ues. Add(aNunber) ;
}
return Get Object();
}

voi d TM/W ndow. : WiteQbject(int& obj, void* os)

*(of pstreant)os << obj;

voi d TMyW ndow. : Streamer:: Wite(opstream& os) const

MSJ- Ted Faison Nov 27, 1993 OWL 2.0 Tour page 22

WiteBasebj ect ((TW ndow*) Get Obj ect (), o0s);
0Ss << Get Obj ect ()->Val ues. Get | t ensl nCont ai ner () ;
Get Obj ect () - >Val ues. For Each(W it eObj ect, &0S);

Listing 6 - Streaming a BIDS container's data from an OWL window.

OWL invokes the functions St r earrer : : Read() and Streaner:: Wite() for each abject that
participates in a streaming operation. Since the class St r eaner is anested class inside each streamable
class, to access the outer class data members requires the use of the function

TSt reaner: : Get bj ect (). Intheexampleinlisting 6, the Wit e() function inserts the container's
item count into the stream, then each item in the container. The Read() function extracts the container's
item count from the stream, then each individual item.

Keep track of your children

One of the most common chores for awindow is the management of child, sibling and parent windows,
which requires the ability to iterate over a collections of windows. Windows objects have their own links
to parents, children and siblings, in the form of handles, managed internally by USER. If awindow has
more than one child, the children are linked together by their sibling handles, and the parent keeps only
the handle of the topmost child window. In my discussion here, a child window is not only a window
whose WS_CHILD style bit is set, but any window that has a parent. Using this definition, top-level
windows are child windows of the Desktop window. Windows uses the window handles to create and
manage hierarchies of windows, as shown in figure 12.

Window

Parent Owner

Child Sibling

—/

Window Window Window
Parent | Owner Parent | Owner Parent | Owner
Child Sibling +— | Child Sibling —f——— ~| Child Sibling

Top-most child Bottom-most child

Figure 12 - The window hierarchy maintained by Windows.

OWL uses TW ndow or derived objects to act as object-oriented stand-ins for windows. Each TW ndow
object has three TW ndow pointers that together allow OWL to build a hierarchy of TW ndow objects,
paralle to the hierarchy of windows maintained by USER. The TW ndow pointers were added to make
window searching and retrieving faster, and to support a more OOP style in window management. Each
OWL window uses the pointers shown in figure 13.

MSJ- Ted Faison Nov 27, 1993 OWL 2.0 Tour page 23

TWindow
Parent
SiblingList
ChildList
TWindgw TWindow TWindow
Parent Parent Parent
SiblingList SiblingList SiblingList
ChildList ChildList ChildList

Figure 13 - The used in OWL 2.0 to manage hierarchies of window objects.

OWL doesn't have a TWindow pointer for owner windows, since it never deals with the issue of
ownership. OWL has a number of functions that make use of the Parent, ChildList and SiblingList
pointers to manage, keep track of, and locate the various windows in a hierarchy, as shown in table 2.

Function Name Description

Childwithid Returns a pointer to the child window with a
given ID number

firstThat iterates over all the child windows, returning a
pointer to the first window that satisfies some
condition.

forEach Iterates over all the child windows, performing an
operation on each one.

GetFirstChild Returns a pointer to the first child window of a
window, i.e. the first one created.

GetLastChild Returns a pointer to the last child window or a
window.

Next Returns a pointer to awindow's next sibling.

NumChildren Gives the number of child windows of awindow.

Previous Returns a pointer to awindow's previous sibling.

Table 2 - The OWL functions that deal with hierarchical windows.

GDI Support

One of the most visible deficienciesin OWL 1.0 was the lack of support for GDI objects and operations.
All drawing on the screen had to be accomplished via direct Windows API calls. OWL 2.0 has been
extended to support a number of GDI objects, to make drawing (and printing) easier and more consistent
with other OWL constructs. The following list shows the new OWL objects that support GDI operations.

Tl con
TCur sor
TDi b
TDC

MSJ- Ted Faison Nov 27, 1993 OWL 2.0 Tour page 24

TRegi on
TBi t map
TFont
TPal ette
TBr ush
TPen

Class TDCis abase class for arather extensive hierarchy of derived device context classes, such as
TScreenDC, T i ent DC, TDi bDC, TMenor yDC, and so on. Printing and print preview are handled
through the built-in OWL classes TPri nt DC and TPr i nt er . AppExpert generates full support for both
print preview and printing. Print preview uses an AppExpert-generated class called Pr evi ewW ndow,
derived from TDecor at edFr ane, to display a single or double-page preview of a document.

New Controls

Many new Windows programs today make use of controls that weren't available until recently, either
because they hadn't been invented yet, or because certain standard ways of doing things hadn't been
developed. In the next two sections I'll discuss a couple of new kinds of controls available in OWL that
will certainly find use in many applications.

Gadgets

The buttons on tool bars, the text fields in status bars, the bitmapped radio buttons have much in common.
These kinds of controls can be handled by traditional means, but they share so many special behaviors and
are used so often that Borland decided to develop a new series of classes to handle them, called TGadget .
Figure 14 shows the hierarchy of OWL gadgets.

TGadget

TBitmapGadget TButtonGadget TTextGadget| |TSeparatorGadget

Figure 14 - The hierarchy of control gadgets.

The various TGadget -derived classes are basically described by their name. TBi t mapGadget handles
bitmaps, TBut t onGadget handles buttons, etc. The TSepar at or Gadget classis used to control the
positioning of gadgetsin a TGadget W ndow. Gadgets are added using the parent window'si nsert ()
member function, which places the added gadget next to the rightmost gadget on the window. To separate
gadgets, you insert a TSepar at or Gadget , indicating how much separation you want.

TGadget -derived classes are not windows, in the ordinary sense. The do occupy space on the screen, and
they do interact with the end user, but they are not derived from class TW ndow, and receive no mouse or
keyboard events from Windows. Class TGadget is not used directly, but as a base class for other objects to
be used in status bars, message bars, tool bars and floating palettes. Only TGadget W ndows or derived
classes can be used to contain gadget controls, because mouse events and other Windows messages are
controlled through the parent TGadget W ndow.

Gauges

MSJ- Ted Faison Nov 27, 1993 OWL 2.0 Tour page 25

A gaugeis areadout device that represents graphically the value of a variable. Gauges can show valuesin
bar form, numeric form, dial form, or other. Windows programs use gauges typically as progress
indicators. Anyone who has installed Windows is familiar with the plain horizontal bar displayed while
Setup is copying files.

OWL 2.0 has anew class called TGauge, that displays controls that look something like the LED bars
used in stereo equipment. Y ou can create either vertical or horizontal gauges. Figure 15 shows a
horizontal TGauge control.

Figure 15 - A horizontal TGauge control.

When you create a TGauge object, you indicate its range, which defaults to 0..100, and you set it with
callsto the function TGauge: : Set Val ue() . TGauge doesn't display its value in numeric form, but a
simple TSt at i ¢ control can be used, allowing you to display the text anywhere you want.

Sliders

Sliders are another type of control OWL has borrowed from the world of audio equipment. A dider isa
linear control that lets you set the value of avariable. Sliders are frequently used in conjunction with
gauges, and can be created in both horizontal and vertical styles. Figure 16 shows a horizontal slider
created in OWL 2.0, with the class THSI i der .

Figure 16 - A horizontal slider control.

Sliders can be adjusted both with the mouse and the keyboard. Y ou read the position of their cursor setting
with the function TSI i der : : Get Posi ti on(). The values returned are controlled by the range given to
the control with the function TSI i der : : Set Range() , S0 values are constrained to be between some
minimum and maximum value. Most of the attributes of a TSI i der can be changed, such as the
background color, the thickness of the slot area, whether the cursor snaps to the closest tick mark, etc. The
tick marks on the slider control are programmable, so you can have as many marks as you want (including
none).

Edit Controls with Data Validation

OWL 2.0 doesn't introduce any new classes for text editing, but does enhance the TEdi t class availablein
OWL 1.0. Probably the most common thing do you with edit controls is check to seeif the user entered
something valid -- a process known as data validation. If afield requires a value between 30 and 40, then
you have to check not only that digits were entered, but also that the number given is within the correct
range. If afield is expected to contain a telephone number, then the data entered must also satisfy a
certain layout or template. OWL uses so-called picture strings to define the layout of data of this type. To
have OWL validate an edit field for you, you attach a validator object to the edit control. Picture strings
and data validator objects are features that are completely missing in MFC 2.5. OWL 2.0 has several types
of validators, as shown in figure 17.

MSJ- Ted Faison Nov 27, 1993 OWL 2.0 Tour page 26

TValidator

TFilterValidator TPXPictureValidator TLookupValidator

TRangeValidator TStringLookupValidator

Figure 17 - The edit control data validator class hierarchy in OWL 2.0.

TFi | t er Val i dat or allows you to specify a set of characters that are accepted by an edit control. To
createaTFi | t er Val i dat or that only accepts |lowercase |etters in the range a..g, you can create an
object like this:

TVval idator* validator = new TFilterValidator("abcdefg"));

or you can use the shorthand notation:

TValidator* validator = new TFilterValidator("a-g"));

Once avalidator is created, it is attached to an edit control like this:

/!l create an Edit control
TEdit* edit = new TEdit(...);

/'l create and attach a data validator
edit->SetValidator(new TFilterValidator("a-g"));

After attaching a validator, OWL takes full control for checking the contents of an edit control. If you
want some special type of validation to take place, all you have to do is derive a class from one of the
validator classes and add what you need. When the user types something, attempts to move the focus from
acontrol, or closes a dialog box with the OK button, the validator springs into action. If datais found to
be invalid, an error message is displayed.

Getting back to the validator hierarchy in figure 17, a TPXPi ct ur eVal i dat or alowsyou to define a
pictorial template of the data expected in a control. Thistemplate is actually a string, in which certain
reserved characters have special meaning. For example, to specify atelephone field, you would use the
picture string "##-####H" . Other characters can be used to accept letters only, digits or |etters, letters with
case conversion, etc.

Class TLookupVal i dat or allowsyou to provide alist of valid entries. The derived class

TSt ri ngLookupVal i dat or allowsyou to specify a series of strings. For example, if an edit control
accepted only one of the 3 strings Los Angeles, New Y ork, Atlanta, then you could create a validated edit
control like this:

TStringCollection* cities = new TStringCollection(5);
cities->Add(new string("Los Angeles"));

cities->Add(new string("New York"));

cities->Add(new string("Atlanta"));

TEdit* edit = new TEdit(parent Wndow, 101, 10);

edi t - >Set Val i dat or (new TSt ri ngLookupVal i dator(cities));

MSJ- Ted Faison Nov 27, 1993 OWL 2.0 Tour page 27

Y ou can build custom lookup validators for special cases. For example, you might have a database of valid
entries, such as ZIP codes. To create a validator that accesses the database, you would derive a class from
TLookupVal i dat or and have it search your database for valid entries.

VBX Controls

With the advent of Visual Basic, the market has seen the introduction of an impressive number of VBX
custom controls written in that language. OWL treats VBX controls just like native controls like TEdi t
and TSl i der, soitisvery straightforward to use them. There are a couple of extra things you need to do
to use VBX controlsin your system, to process notification messages from VBX controls.

Since al VBX controls generate notification mesages in a standard way, OWL uses a class called
TVbxEvent Handl er to handle these messages. When you create a dialog box that will include VBX
controls, you need to multiply derive your dialog box from both the standard TDi al og class and from
TVbxEvent Handl er, likethis:

class TMyDialog : public TDi al og, public TVbxEventHandler {...};

Y ou use objects of type TVbxCont r ol to encapsulate each of the VBX controls. Next, you need to
associate each of the VBX control's notification messages with a dialog box member function. Assuming
you had aVBX control that handled spreadsheets, it might have a notification message called "Columns'.
To associate this message with the member function TWDi al og: : EvCol umrms() , you heed to put a
specidl EV_VBXEVENTNAME entry in the response table for TMW/Di al og, indicating the ID of the
VBX control, like this:

DEFI NE_RESPONSE_TABLE2(TMyDi al og, TDi al og, TVbxEvent Handl er)
I
EV_VBXEVENTNAME(| D_SPREADSHEET, " Col unms", EvCol urms) ,
END_RESPONSE_TABLE;

The member function EvColumns must be declared like this:

voi d EvDropSrc(VBXEVENT far * event);

so the dialog box declaration would ook something like this:

class TMyDi al og : public TDi al og, public TVbxEvent Handl er {
public:

TVbxControl * mySpr eadsheet;
voi d EvCol ums(VBXEVENT far * event);
DECLARE_RESPONSE_TABLE(TW/Di al og) ;

};

Having created an association between the VBX control notification messages and the dialog box's
member functions, the rest of the code is fairly straightforward. When the control sends a"Columns®
notification, the function EvCol urms() isinvoked by OWL. This function takes VBXEVENT f ar *
argument, which you can then use to set or get properties from the VBX control, using code like this:

TWMyDi al og: : EvCol umms(VBXEVENT far * event)
| ong property, anotherProperty;
/1l read a property

VBXCGet Pr opByNane(event - >Contr ol ,
"SoneProperty", &property);

MSJ- Ted Faison Nov 27, 1993 OWL 2.0 Tour page 28

/'l wite a property
VBXSet Pr opByNane(event - >Contr ol ,
"SomeQt her Property", anotherProperty);

}

OWL provides fairly good encapsulation of the VBX details, yielding an interface that is almost as object-
oriented as that of the standard OWL controls. Y ou can use the new Resource Workshop to place VBX
controls on your dialog boxes. Y ou can install VBX controls onto the tool palette, and drag and drop the
controls just like any other Resource Workshop controls. Although | showed how to manually include a
VBX control into adialog box, ClassExpert can aso take care of all the details of generating the correct
event response table entries for VBX notification messages, like the Visual C++ ClassWizard.
ClassExpert also adds TVbxEvent Handl er asabase class of dialog boxes that incorporate VBX
controls. All you haveto do is add code inside the body of handlerslike TM/Di al og: : EvCol umms() ,
and you're ready to go.

Conclusion

OWL 2.0isan extensive class library, and to show all of its features would require more space than can be
allotted to asingle article. | have touched on some of the new features that | thought were of particular
interest, but many others remain, such as MDI, Drag and Drop, support of the Windows clipboard, fonts
and menus. To summarize, here are some of the features | think are the strong points of OWL 2.0:

It uses a Document/View architecture

The class hierarchy has arelatively simple structure, with well thought-out classes

It makes good use of C++ features such as virtual base classes, multiple inheritance, runtime type
identification and polymorphism

It uses template container classes

It uses standard C++ exception handling

It is portable to any C++ compiler compliant with the ANSI draft

OWL isagrest library, but it does have a few weaknesses and limitations. Here is alist of the ones| feel
are significant:

no classes to support OLE

no ODBC support

no classes to support DDE

no support for multimedia

no automatic memory-leak detection

Whether the strengths and limitations | listed will matter to you depend entirely on the kind of
applications you develop. If you plan to develop OLE 2.0 clients, containers, or servers, you should
seriously consider using MFC 2.5 rather than OWL, given the hideous complexity of OLE programming
without an application framework. MFC makes the job extremely simple, and even supports OLE through
AppWizard, to generate the type of OLE object you want. Asfor using DDE in an OWL 2.0 application,
the DDEML simplifies the task substantially, making it relatively easy to encapsulate the basicsin a
couple of small OWL classes. OWL 2.0 doesn't have ODBC support, which is becoming a very hot item in
today's world of bound controls and data base accessing. MFC 2.5 does support ODBC, but | wouldn't
recommend using MFC only on account of that. ODBC is a pretty simple APl that isfairly easy to
encapsulate in an OWL class.

One of the best features of OWL 2.0 is its clean object-oriented design which, although not perfect, is well
thought out. C programmers may have a steep learning curve with OWL 2.0, but seasoned C++

MSJ- Ted Faison Nov 27, 1993 OWL 2.0 Tour page 29

programmers find OWL relatively easy to work with. A good design makes for a good foundation,
allowing subsequent changes and additions to be made without too much trouble. Adding new features to
OWL isnot only possible but often easy as well.

Sidebar - The first Borland C++ expert: AppExpert

Thetask of creating a new OWL application with Borland C++ 4.0 is not trivial. Using the old C-style
approach, you could cut and paste pieces of applications to build a skeleton framework, then add the
functions for you menu commands, create and manage the status line and the tool bar, and so on. Borland
decided to take the Microsoft approach, and create a built-in assistant (like the Visual C++ App Wizard),
called AppExpert. Although AppExpert is not a part of OWL 2.0 in any way, it dramatically simplifies the
task of creating OWL applications. Y ou access AppExpert from the Integrated Devel opment Environment
(IDE) of Borland C++ 4.0, through the menu command Project | AppExpert. Aswith AppWizard, you can
only create new applications with AppExpert. Once an application is created, you can no longer use
AppExpert to make changes to it. AppExpert presents the following dialog box, through which you can
select avast array of options that affect your application:

= AppExpert Application Generation Options

Topics Application: Summary

—Application I
» Basic Options
= Advanced Options ii AppExpert
Code Gen Control Select the baszic application model and feature zet, desired.
= Admin Options
=M ain Window
= Bazic Options
= 5DI Chlient

= MDI Client Model: Features:
=MDI Child Yiew

= Basic Options <+ Multiple document interface | SpeedBar

Lze the autliner, left, to view ather application options.
Prezs the Generate button to create the application skeleton.

~+ Single document interface | Status line
| Drag/drop
| Document/view +| Printing

Customize application I

Applhcation: Summary El= [
xﬂancel

Generate

Figure 18 - The AppExpert dialog box.

AppExpert allows you to create both MDI and SDI applications, with the optional use of the Doc/View
model. As you can see from figure 18, AppExpert automatically creates code to support the tool bar, the
status line, print preview, and drag and drop. In addition, you can control the color and styles of your
app's windows, the viewers associated with the child windows (if the Doc/View model was selected), the
parameters for the File Open dialog box, the generation of a help file, and the information displayed in the
Help About box. Having selected the application features you want, clicking the Generate button will
produce all the source files, header files, resource files and support files required for your application.
Building the application will require a few minutes of compile and link time, but you will wind up with a
completely function -- although skeletal -- application.

MSJ- Ted Faison Nov 27, 1993 OWL 2.0 Tour page 30

Sidebar - The second Borland C++ expert: ClassExpert

AppExpert only knows how to create new OWL applications. To add the functionality required to
generate areal application requires you to create additional classes, dialog boxes, resources, menu
commands, etc. ClassExpert is designed to assist in writing all the remaining code your application needs,
that wasn't already created with AppExpert. Asfor AppExpert, ClassExpert is not a part of OWL 2.0, but
does use and generate code for OWL 2.0. Y ou run ClassExpert by browsing (right-clicking) the project's
EXE filename in the Project Manager window, and selecting the command View | ClassExpert. Running
ClassExpert gives you a new Smalltalk-like development environment, characterized by a window with
three separate panes, as shown in figure 19.

Borland C++t - sidebar - [ClassExpert - sidebar:sidbrapp.cpp]
Search ¥iew Project Debug Tool Options Window Help

= File Edit

Classes Events

sidebarAboutDlg & Command Notifications
[sidebarApp = ¥Yirtual Functions
sidebarMDIChild — CanClose
sidebarMDIClient — Error

IdleAction

~ InitApplication
Initinstance
[InitMainW¥Window
- Messageloop

~ PreProcessMenu
~ ProcessAppMsg

<

rvold sidebarfApp::InitHainWindow [)

i
ThecoratedMDIFrame* frame = new ThecoratedMDIFrame (Name, MDI MENU, ¥ (new j

nCmdZhow = (nCwd3how != 3W SHOWMINNOACTIVE] 2 3W _SHOWNORMAL : nCmd3how;

I j

S Assign ICON w this application.

I
frame->JetIcon(thls, IDI MDIAPPLICATICHN]) ;

el 1 +
| | 1:1 | Inser |
Figure 19 - The ClassExpert development environment.

The top left pane shows alist of the classes in your application. The top right pane shows the Windows
messages and handlers for each class. The bottom pane is the source code for the selected class and
handler. Y ou can develop all the code for your application using the ClassExpert environment. Y ou can
easily jump around in your project by selecting classes and handlers in the ClassExpert panes. To bring up
the header file for a class, you just browse (right click) the class name, then select the command Edit
Header. If you want to change a menu that affects a class, just browse the class name, and select the
command Edit Menu. Resource Workshop will appear with the menu loaded and ready for editing. To

MSJ- Ted Faison Nov 27, 1993 OWL 2.0 Tour page 31

edit the resource for a dialog box class, browse the class and select Edit Dialog, and Resource Workshop
will come up on that dialog box.

Y ou can use ClassExpert to create new classes, to add handlers for Windows messages, or to override any
of the virtual functions in the base classes. ClassExpert automatically adds code for certain types of
functions, and you can add your own code by editing in the lower pane of the ClassExpert window. Y ou
can debug your application without ever leaving ClassExpert. By browsing aline of code in the edit pane,
you can select the commands Toggl e Br eakpoi nt, Run To Cursor,or Set Wat ch. Borland C++ 4.0
has a class browser, that allows you to display the names of data members and member functions of class
objects. The browser can be invoked in ClassExpert by selecting an object in the edit pane, browsing it,
and choosing the Br owse Symbol command. From inside the browser, you can browse individual
member functions or data members, or search for the definition and references to a given symbol. The
browser is also capable of displaying and printing a graphic representation of your project's entire class
hierarchy.

MSJ- Ted Faison Nov 27, 1993 OWL 2.0 Tour page 32

